

KPC EHS Consultants, LLC

Mojave 68 Project

GREENHOUSE GAS IMPACT ANALYSIS CITY OF VICTORVILLE

PREPARED BY: Kevin P. Carr, MS KPCEHSConsultants@cfl.rr.com 951-294-0822

February 2023

TABLE OF CONTENTS

1		INTRODUCTION	5
	1.1	.1 PROJECT LOCATION	5
	1.2	.2 PROJECT DESCRIPTION	5
2		ENVIRONMENTAL SETTING	8
	2.1	.1 MOJAVE DESERT AIR BASIN	8
	2.2	.2 REGIONAL CLIMATE AND METEOROLOGY	8
	2.3	.3 GREENHOUSE GASES AND CLIMATE CHANGE	9
	2.4	.4 GLOBAL WARMING POTENTIAL	
	2.5	.5 REGULATORY BACKGROUND	14
	2.6	.6 APPLICABLE POLICIES AND PROGRAMS	24
3		POTENTIAL PROJECT GREENHOUSE GAS IMPACTS	26
	3.1	.1 INTRODUCTION	
	3.2	.2 THRESHOLDS OF SIGNIFICANCE	26
	3.3	.3 CALIFORNIA EMISSIONS ESTIMATOR MODEL	27
	3.4	.4 CONSTRUCTION EMISSIONS	27
	3.5	.5 OPERATIONAL EMISSIONS	29
	3.6	.6 GREENHOUSE GAS EMISSIONS ANALYSIS	31
	3.7	.7 CUMULATIVE IMPACTS	
4		MITIGATION MEASURES	34
	4.1	.1 CAP MITIGATION	34
5		CONCLUSION	34
6		REFERENCES	
-			

EXHIBITS

Exhibit 1-1: Lo	ocation Map	6
Exhibit 1-2: Si	ite Plan	7

TABLES

Table 2-1: Greenhouse Gases & Health Effects	10
Table 2-2 Global Warming Potential (GWP) Values Relative To CO2	
Table 2.5-1: Actions for the Scoping Plan Scenario: AB 32 GHG Inventory Sectors	17
Table 2.5-2: Major Climate Legislation & Executive Orders Since 2017 Scoping Plan	21
Table 3.2-1: Significant Emissions Thresholds	
Table 3.4-1: Construction Duration	
Table 3.4-2: Construction Equipment Assumptions	
Table 3.4-3: Construction GHG Emissions	
Table 3.5-1: Summary Of Peak Operational Annual Emissions	
Table 3.6-1 Summary of Project's Peak Daily and Annual GHG Emissions	32

APPENDICES

APPENDIX A: CalEEMod Emissions Model Outputs

APPENDIX B: Traffic Study Scope and Vehicle Miles Traveled (VMT) Screening Memorandum

APPENDIX C: CARB EMFAC Offroad2021 (v1.0.3) Emissions Inventory Data Sheet.

APPENDIX D: Victorville GHG Screening Tables (Draft)

ACRONYMS & ABBREVIATIONS

°F	degrees Fahrenheit
μg/m³	micrograms per cubic meter
AAQS	Ambient air quality standards
ADT	Average Daily Trips
AQMD	Air Quality Management District
AQMP	Air Quality Management Plan
ARB	California Air Resources Board
BACM	Best Available Control Measures
Basin	Mojave Desert Air Basin
BAU	Business-as-usual
BMPs	Best Management Practices
CAA	Clean Air Act
CAAQS	California Ambient Air Quality Standards
CalEEMod	California Emissions Estimator Model
Caltrans	California Department of Transportation
CAPCOA	California Air Pollution Control Officers Association
CARB	California Air Resources Board
CCR	California Code of Regulations
CEQA	California Environmental Quality Act
CFR	Code of Federal Regulations
CH ₄	Methane
СО	Carbon Monoxide
CO ₂	Carbon Dioxide
CO ₂ e	Carbon Dioxide equivalents
CO ₂ e/yr	Carbon Dioxide equivalents per year
County	County of San Bernardino
DPM	Diesel Particulate Matter
EPA	Environmental Protection Agency
GHG	Greenhouse Gas
MDAQMD	Mojave Desert Air Quality Management District
MT CO ₂ e/yr.	Metric tons of carbon dioxide equivalents per year
NAAQS	National Ambient Air Quality Standards
NO ₂	Nitrogen Dioxide
NOx	Oxides of Nitrogen

O ₃	Ozone
Pb	Lead
PM ₁₀	Particulate Matter 10 microns in diameter
PM _{2.5}	Particulate Matter 2.5 microns in diameter
PPM	Parts Per Million
ROG	Reactive Organic Gases
SIPs	State Implementation Plans
SO ₂	Sulfur Dioxide
SO₂ SRA	Sulfur Dioxide Source Receptor Area
SO2 SRA TAC	Sulfur Dioxide Source Receptor Area Toxic Air Contaminant
SO2 SRA TAC TIA	Sulfur Dioxide Source Receptor Area Toxic Air Contaminant Traffic Impact Analysis
SO2 SRA TAC TIA TRU	Sulfur Dioxide Source Receptor Area Toxic Air Contaminant Traffic Impact Analysis Transport Refrigeration Unit
SO2 SRA TAC TIA TRU VMT	Sulfur Dioxide Source Receptor Area Toxic Air Contaminant Traffic Impact Analysis Transport Refrigeration Unit Vehicle Miles Traveled

1 INTRODUCTION

This report presents the results of the Greenhouse Gas (GHG) Impact Analysis prepared by KPC EHS Consultants, LLC., for the proposed Mojave 68 Warehouse Project ("Project").

The purpose of this Analysis is to evaluate the potential impacts to air quality associated with construction and operation of the proposed Project and recommend measures to mitigate impacts considered potentially significant in comparison to thresholds established by the Mojave Desert Air Quality Management District (MDAQMD).

1.1 PROJECT LOCATION

The proposed Mojave 68 Warehouse Project is located on undeveloped land bordered by Mojave Drive on the south, Cactus Road on the north, Onyx Road on the east, and Mesa Linda Drive on the west in the City of Victorville, as shown on Exhibit 1-1. The Project site is bounded by land to the north, east, and west; with existing residential homes located south of the Project site in the City of Victorville. The County of San Bernardino Assessor's Parcel Numbers are 3128-621-02 thru 06.

1.2 PROJECT DESCRIPTION

The Project proposes development of approximately 1,097,300 square feet building with 845,840 square feet of unrefrigerated warehouse, 211,480 square feet refrigerated warehouse, and 40,000 square feet of office space uses, in addition to associated facilities, infrastructure, and improvements, such as fencing, gates, parking, landscaping, lighting, and walkways on an approximately 66.4-acre site, as shown on Exhibit 1-2.

A total of 187 truck dock doors are proposed; 94 along the eastern side of the building facing Onyx Road, and 93 truck dock doors are proposed along the western side of the building facing Mesa Linda Avenue. A total of 727 truck trailer parking spaces (10' x 53') are proposed on the east side of the building adjacent to Onyx Road and the west side of the building adjacent to Mesa Linda Avenue.

A total of 511 parking spaces for passenger vehicles are proposed in a parking lot on the south side of the building adjacent to Mojave Drive and parking lots on the north side of the building adjacent to Cactus Road.

For the purposes of this analysis, it has been assumed that the Project will be developed with an anticipated Opening Year as the 4th quarter of 2024.

EXHIBIT 1-1: LOCATION MAP

EXHIBIT 1-2: SITE PLAN

2 ENVIRONMENTAL SETTING

This section provides an overview of the existing air quality conditions in the Project area and Mojave Desert Air Basin region.

2.1 MOJAVE DESERT AIR BASIN

The Project site is located in the Mojave Desert Air Basin (MDAB) and is under the jurisdiction of the MDAQMD. The District has jurisdiction over the desert portion of San Bernardino County and the far eastern end of Riverside County. This region includes the incorporated communities of Adelanto, Apple Valley, Barstow, Blythe, Hesperia, Needles, Twentynine Palms, Victorville, and Yucca Valley. This region also includes the National Training Center at Fort Irwin, the Marine Corps Air Ground Combat Center, the Marine Corps Logistics Base, the eastern portion of Edwards Air Force Base, and a portion of the China Lake Naval Air Weapons Station.

The air quality assessment for the proposed Project includes estimating emissions associated with short- term construction and long-term operation of the proposed Project. The California Emissions Estimator Model (CalEEMod) v. 2020.4.0 is the modeling tool used in this analysis to assess the air quality impacts of the project. In addition, the MDAQMD created guidelines and requirements to conduct air quality analyses as contained in the MDAQMD's *California Environmental Quality Act and Federal Conformity Guidelines* (February 2020) and were adhered to in the assessment of air quality impacts for the proposed Project.

2.2 REGIONAL CLIMATE AND METEOROLOGY

Air quality in the Project area is not only determined by various emissions sources (mobile, area, construction, etc.) but is also affected by natural factors such as topography, meteorology, and climate including atmospheric conditions such as wind speed, wind direction, temperature, and rainfall.

The District covers the majority of the Mojave Desert Air Basin (MDAB). The MDAB is an assemblage of mountain ranges interspersed with long broad valleys that often contain dry lakes. Many of the lower mountains which dot the vast terrain rise from 1,000 to 4,000 feet above the valley floor. Prevailing winds in the MDAB are out of the west and southwest. These prevailing winds are due to the proximity of the MDAB to coastal and central regions and the blocking nature of the Sierra Nevada mountains to the north; air masses pushed onshore in southern California by differential heating are channeled through the MDAB. The MDAB is separated from the southern California coastal and central California valley regions by mountains (highest elevation approximately 10,000 feet), whose passes form the main channels for these air masses. The Antelope Valley is bordered in the northwest by the Tehachapi Mountains, separated from the Sierra Nevadas in the north by the Tehachapi Pass (3,800 ft elevation). The Antelope Valley is bordered in the south by the San Gabriel Mountains, bisected by Soledad Canyon (3,300 ft).

The Mojave Desert is bordered in the southwest by the San Bernardino Mountains, separated from the San Gabriel Mountains by the Cajon Pass (4,200 ft). A lesser channel lies between the San Bernardino Mountains and the Little San Bernardino Mountains (the Morongo Valley).

The Palo Verde Valley portion of the Mojave Desert lies in the low desert, at the eastern end of a series of valleys (notably the Coachella Valley) whose primary channel is the San Gorgonio Pass (2,300 ft) between the San Bernardino and San Jacinto Mountains.

During the summer the MDAB is generally influenced by a Pacific Subtropical High cell that sits off the coast, inhibiting cloud formation and encouraging daytime solar heating. The MDAB is rarely influenced by cold air masses moving south from Canada and Alaska, as these frontal systems are weak and diffuse prior to reaching the desert. Most desert moisture arrives from infrequent warm, moist, and unstable air masses from the south. The MDAB averages between three and seven inches of precipitation per year (from 16 to 30 days with at least 0.01 inches of precipitation). The MDAB is classified as a dry-hot desert climate (BWh), with portions classified as dry-very hot desert (BWhh), to indicate at least three months have maximum average temperatures over 100.4° F.

The MDAB experiences changes with the seasons including in the winter freezing temperatures, strong winds, and precipitation in the form of snow primarily above 5,000 ft in elevation, and rain below 5,000 ft. Most precipitation occurs between November and April. During summer, brief, high-intensity thunderstorms may occur suddenly and can cause high winds and localized flash flooding.

2.3 GREENHOUSE GASES and CLIMATE CHANGE

Greenhouse gases, also known as GHGs, are gases in the earth atmosphere that trap heat and create the greenhouse effect. The gases act like the panels of a greenhouse, thus the reason for the name greenhouse gases. The greenhouse effect is a natural occurrence that prevents nighttime temperatures from dropping to levels too low to sustain life. The greenhouse effect helps to maintain earth's temperature at an average 57°F (14°C), without the greenhouse effect temperatures would drop to as low as -0.4°F (-18°C).

Human activity however, has created changes to earth's natural greenhouse effect due to the increased release of greenhouse gases. Since the Industrial Revolution, humans have been releasing large quantities of GHGs into the atmosphere. The impact of human activity on the greenhouse gas effect is referred to as Climate Change.

GHGs can be categorized into natural and man-made. Natural GHGs include gases such as Carbon Dioxide (CO_2), Methane (CH_4), Nitrous Oxide (N_2O), and Water Vapor. Man-made GHGs include fluorinated gases such as hydrofluorocarbons (HFC), perfluorocarbons (PFC), nitrogen trifluoride (NF_3) and sulfur hexafluoride (SF_6).

GHGs are considered global pollutants, whereas criteria air pollutants and toxic air contaminants (TACs) are air pollutants of regional and local concern. Criteria pollutants and TACs not only have localized air quality effects they have relatively short atmospheric lifetimes (typically one day or less), GHGs on the other hand have long atmospheric lifetimes (one to several thousand years). Due to the long lifetime GHGs persist in the atmosphere for long enough time periods to be dispersed around the globe. Although the exact lifetime of a GHG molecule is dependent on multiple variables and cannot be pinpointed, more CO₂ is emitted into the atmosphere than is sequestered by ocean uptake, vegetation, or other forms of carbon sequestration. Of the total annual human-caused CO₂ emissions, approximately 55 percent is sequestered through ocean and land uptakes every year, averaged over the last 50 years, whereas the remaining 45 percent of human-caused CO₂ emissions remains stored in the atmosphere.¹ Table 2-1: Greenhouse Gases describes the primary GHGs attributed to global climate change, including their physical properties.

¹ Intergovernmental Panel on Climate Change, Carbon and Other Biogeochemical Cycles. In: Climate Change 2013: The Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 2013. http://www.climatechange2013.org/ images/report/WG1AR5_ALL_FINAL.pdf

Greenhouse Gas	Description	Health Effects
Carbon Dioxide (CO ₂)	Carbon dioxide (CO ₂) is the primary greenhouse gas emitted through human activities. In 2020, CO ₂ accounted for about 79% of all U.S. greenhouse gas emissions from human activities. Carbon dioxide is naturally present in the atmosphere as part of the Earth's carbon cycle (the natural circulation of carbon among the atmosphere, oceans, soil, plants, and animals). Human activities are altering the carbon cycle– both by adding more CO ₂ to the atmosphere and by influencing the ability of natural sinks, like forests and soils, to remove and store CO ₂ from the atmosphere. While CO ₂ emissions come from a variety of natural sources, human-related emissions are responsible for the increase that has occurred in the atmosphere since the industrial revolution. ² Carbon dioxide enters the atmosphere through burning fossil fuels (coal, natural gas, and oil), solid waste, trees and other biological materials, and also as a result of certain chemical reactions (e.g., manufacture of cement). Carbon dioxide is removed from the atmosphere (or "sequestered") when it is absorbed by plants as part of the biological carbon cycle.	Outdoor levels of CO ₂ typically range from 300 to 400 ppm but can be as high as 600 to 900 ppm in metropolitan areas. Ambient levels are not high enough to result in negative health effects. CO ₂ is considered to be minimally toxic by inhalation. The primary health effects caused by CO ₂ are the result of its behavior as a simple asphyxiant. A simple asphyxiant is a gas which reduces or displaces the normal oxygen in breathing air. Symptoms of mild CO ₂ exposure may include headache and drowsiness. At higher levels, rapid breathing, confusion, increased cardiac output, elevated blood pressure and increased arrhythmias may occur. Breathing oxygen depleted air caused by extreme CO ₂ concentrations can lead to death by suffocation.
Methane (CH₄)	In 2020, methane (CH ₄) accounted for about 11% of all U.S. greenhouse gas emissions from human activities. Human activities emitting methane include leaks from natural gas systems and the raising of livestock. Methane is also emitted by natural sources such as natural wetlands. In addition, natural processes in soil and chemical reactions in the atmosphere help remove CH ₄ from the atmosphere. Methane's lifetime in the atmosphere is much shorter than carbon dioxide (CO ₂), but CH ₄ is more efficient at trapping radiation than CO ₂ . Pound for pound, the comparative impact of CH ₄ is 25 times greater than CO ₂ over a 100-year period. ¹ Globally, 50-65% of total CH ₄ emissions come from human activities. ^{2, 3} Methane is emitted from energy, industry, agriculture, land use, and waste management activities, Methane is emitted during the production and transport of coal, natural gas, and oil. Methane emissions also result from livestock and other agricultural practices, land use, and by the decay of organic waste in municipal solid waste landfills	Exposure to CH ₄ at high levels can cause asphyxiation, loss of consciousness, headache and dizziness, nausea and vomiting, weakness, loss of coordination, and an increased breathing rate.

Table 2-1: Greenhouse Gases & Health Effects

Nitrous Oxide (N ₂ O)	In 2020, nitrous oxide (N_2O) accounted for about 7% of all U.S. greenhouse gas emissions from human activities. Human activities such as agriculture, fuel combustion, wastewater management, and industrial processes are increasing the amount of N_2O in the atmosphere. Nitrous oxide is also naturally present in the atmosphere as part of the Earth's nitrogen cycle and has a variety of natural sources. Nitrous oxide molecules stay in the atmosphere for an average of 114 years before being removed by a sink or destroyed through chemical reactions. The impact of 1 pound of N_2O on warming the atmosphere is almost 300 times that of 1 pound of carbon dioxide. ¹ Globally, about 40% of total N_2O emissions come from human activities. ² Nitrous oxide is emitted from agriculture, land use, transportation, industry, and other activities.	N ₂ O is not considered harmful at low concentrations. Exposure may cause light headedness, dizziness, and euphoria. Chronic exposure has been associated with brain damage.
	Nitrous oxide is emitted during agricultural, land use, and industrial activities; combustion of fossil fuels and solid waste; as well as during treatment of wastewater.	
Water Vapor	Water is constantly cycling through the atmosphere. Water evaporates from the Earth's surface and rises on warm updrafts into the atmosphere. It condenses into clouds, is blown by the wind, and then falls back to the Earth as rain or snow. This cycle is one important way that heat and energy are transferred from the surface of the Earth to the atmosphere, and transported from one place to another on our planet.	There are no known direct health effects related to water vapor, however when some pollutants react with water vapor, the reaction forms a transport mechanism for these pollutants to enter the human body through water vapor.
	Water vapor is also the most important greenhouse gas in the atmosphere. Heat radiated from Earth's surface is absorbed by water vapor molecules in the lower atmosphere. The water vapor molecules, in turn, radiate heat in all directions. Some of the heat returns to the Earth's surface. Thus, water vapor is a second source of warmth (in addition to sunlight) at the Earth's surface.	
Fluorinated Gases hydrofluorocarbons (HFC), perfluorocarbons (PFC), nitrogen trifluoride (NF ₃) sulfur hexafluoride (SF ₆).	Fluorinated gases, also called F-gases, have no significant natural sources and come almost entirely from human-related activities. They are emitted through their use as substitutes for ozone- depleting substances (e.g., as refrigerants) and through a variety of industrial processes such as aluminum and semiconductor manufacturing. Many fluorinated gases have very high global warming potentials (GWPs) relative to other greenhouse gases, so small atmospheric concentrations can have disproportionately large effects on global temperatures. They can also have	No health effects are known for exposures to HFCs and PFCs. Chronic and repeated exposure to NF_3 has the potential to cause fluorosis and impact the kidneys and liver functions. SF_6 displaces oxygen in the atmosphere and is a suffocation danger in high concentrations in confined spaces.

long atmospheric lifetimes—in some cases, lasting thousands of years. Like other long-lived greenhouse gases, most fluorinated gases are well- mixed in the atmosphere, spreading around the world after they are emitted. Many fluorinated gases are removed from the atmosphere only when	
they are destroyed by sunlight in the far upper atmosphere. In general, fluorinated gases are the most potent and longest lasting type of greenhouse gases emitted by human activities.	

2.4 Global Warming Potential

Greenhouse gases (GHGs) warm the Earth by absorbing energy and slowing the rate at which the energy escapes to space; they act like a blanket insulating the Earth. Different GHGs can have different effects on the Earth's warming. Two key ways in which these gases differ from each other are their ability to absorb energy (their "radiative efficiency"), and how long they stay in the atmosphere (also known as their "lifetime").

The Global Warming Potential (GWP) was developed to allow comparisons of the global warming impacts of different gases. GHGs have varying global warming potential (GWP). A GWP is a "quantified measure of the globally averaged relative radiative forcing impacts of a particular greenhouse gas, defined as the accumulated radiative forcing within a specific time horizon caused by emitting one kilogram of the gas, relative to that of the reference gas" (EPA 2017). The reference gas for GWP is carbon dioxide (CO₂); CO₂ has a GWP of one. For example: methane has a GWP of 21, which means that it has a greater global warming effect than carbon dioxide on a molecule per molecule basis. One teragram of carbon dioxide equivalent (Tg CO₂ Eq.) is the emissions of the gas multiplied by the GWP. One teragram is equal to one million metric tons. The carbon dioxide equivalent is a good way to assess emissions because it gives weight to the GWP of the gas. The lifetime and GWP of selected GHG are summarized in Table 2-2. As shown in the table, GWP for a 100-year time horizon from the Intergovernmental Panel on Climate Change (IPCC) second assessment report (SAR), fourth assessment report (AR4) and the fifth assessment report (AR5) ranges from one (carbon dioxide) to 23,500 (sulfur hexafluoride).

Gas Name	Formula	Lifetime (years)	SAR GWP	AR4 GWP	AR5 GWP
Carbon Dioxide	CO ₂		1	1	1
Methane	CH4	12	21	25	28
Nitrous Oxide	N ₂ O	114	310	298	265
Sulphur Hexafluoride	SF ₆	3200	23,900	22,800	23,500
Nitrogen Trifluoride	NF ₃	740	n/a	17,200	16,100
Hexafluoroethane (PFC-116)	C_2F_6	10,000	9,200	12,200	11,100
Octafluoropropane (PFC-218)	C₃F ₈	2,600	7,000	8,830	8,900
Octafluorocyclobutane (PFC-318)	C_4F_8	3,200	8,700	10,300	9,540
Tetrafluoromethane (PFC-14)	CF ₄	50,000	6,500	7,390	6,630
Hydrofluorocarbon 125	HFC-125	29	2,800	3,500	12,400
Hydrofluorocarbon 134a	HFC-134a	14	1,300	1,430	1,300
Hydrofluorocarbon 143a	HFC-143a	52	3,800	4,470	4,800
Hydrofluorocarbon 152a	HFC-152a	1	140	124	138
Hydrofluorocarbon 227ea	HFC-227ea	34	2,900	3,220	3,350
Hydrofluorocarbon 23	HFC-23	270	11,700	14,800	12,400
Hydrofluorocarbon 236fa	HFC-236fa	240	6,300	9,810	8.060
Hydrofluorocarbon 245fa	HFC-245fa	8	n/a	1,030	858
Hydrofluorocarbon 32	HFC-32	5	650	675	677

Table 2-2 Global warming potential (GWP) values relative to CO2

Source: 1) California Air Resources Board (CARB) GHG Global Warming Potentials: <u>https://ww2.arb.ca.gov/ahg-awps</u>
 2) Greenhouse Gas Protocol, Global Warming Potential Values: https://www.ghgprotocol.org/sites/default/files/ghgp/Global-Warming-Potential-Values%20%28Feb%2016%202016%29_1.pdf

2.5 REGULATORY BACKGROUND

2.5.1 FEDERAL REGULATIONS

Currently, there are no national standards for nationwide GHG reduction or regulations and legislation to address climate change and GHG emissions reduction at the project level. However, regulations and legislation has been passed at the federal level for improving energy efficiency fuel economy to reduce impacts on climate change and its effects.

U.S. Environmental Protection Agency Endangerment Finding

The U.S. Environmental Protection Agency (EPA) authority to regulate GHG emissions stems from the U.S. Supreme Court decision in *Massachusetts v. EPA* (2007). The Supreme Court ruled that GHGs meet the definition of air pollutants under the existing Federal Clean Air Act (FCAA) and must be regulated if these gases could be reasonably anticipated to endanger public health or welfare. Responding to the Court's ruling, the EPA finalized an endangerment finding in December 2009. Based on scientific evidence it found that six GHGs (CO₂, CH₄, N₂O, HFCs, PFCs, and SF6) constitute a threat to public health and welfare. Thus, it is the Supreme Court's interpretation of the existing FCAA and the EPA's assessment of the scientific evidence that form the basis for the EPA's regulatory actions.

Federal Vehicle Standards

In response to the U.S. Supreme Court ruling discussed above, Executive Order 13432 was issued in 2007 directing the EPA, the Department of Transportation, and the Department of Energy to establish regulations that reduce GHG emissions from motor vehicles, non-road vehicles, and non-road engines by 2008. In 2009, the NHTSA issued a final rule regulating fuel efficiency and GHG emissions from cars and light-duty trucks for model year 2011, and in 2010, the EPA and NHTSA issued a final rule regulating cars and light-duty trucks for model years 2012–2016.

In 2010, an Executive Memorandum was issued directing the Department of Transportation, Department of Energy, EPA, and NHTSA to establish additional standards regarding fuel efficiency and GHG reduction, clean fuels, and advanced vehicle infrastructure. In response to this directive, the EPA and NHTSA proposed stringent, coordinated federal GHG and fuel economy standards for model years 2017–2025 light-duty vehicles. The proposed standards projected to achieve 163 grams per mile of CO₂ in model year 2025, on an average industry fleet-wide basis, which is equivalent to 54.5 miles per gallon if this level were achieved solely through fuel efficiency. The final rule was adopted in 2012 for model years 2017–2021, and NHTSA intends to set standards for model years 2022–2025 in a future rulemaking. On January 12, 2017, the EPA finalized its decision to maintain the current GHG emissions standards for model years 2022–2025 cars and light trucks. It should be noted that the U.S. EPA is currently proposing to freeze the vehicle fuel efficiency standards at their planned 2020 level (37 mpg), canceling any future strengthening (currently 54.5 mpg by 2026).

In addition to the regulations applicable to cars and light-duty trucks described above, in 2011, the EPA and NHTSA announced fuel economy and GHG standards for medium- and heavy-duty trucks for model years 2014–2018. The standards for CO₂ emissions and fuel consumption are tailored to three main vehicle categories: combination tractors, heavy-duty pickup trucks and vans, and vocational

vehicles. According to the EPA, this regulatory program will reduce GHG emissions and fuel consumption for the affected vehicles by 6 to 23 percent over the 2010 baselines.

In August 2016, the EPA and NHTSA announced the adoption of the phase two program related to the fuel economy and GHG standards for medium- and heavy-duty trucks. The phase two program will apply to vehicles with model year 2018 through 2027 for certain trailers, and model years 2021 through 2027 for semi-trucks, large pickup trucks, vans, and all types and sizes of buses and work trucks. The final standards are expected to lower CO₂ emissions by approximately 1.1 billion metric tons and reduce oil consumption by up to 2 billion barrels over the lifetime of the vehicles sold under the program.

In 2018, the President and the U.S. EPA stated their intent to halt various federal regulatory activities to reduce GHG emission, including the phase two program. California and other states have stated their intent to challenge federal actions that would delay or eliminate GHG reduction measures and have committed to cooperating with other countries to implement global climate change initiatives. On September 27, 2019, the U.S. EPA and the NHTSA published the "Safer Affordable Fuel-Efficient (SAFE) Vehicles Rule Part One: One National Program." (84 Fed. Reg. 51,310 (Sept. 27, 2019.) The Part One Rule revokes California's authority to set its own GHG emissions standards and set zero-emission vehicle mandates in California. On March 31, 2020, the U.S. EPA and NHTSA finalized rulemaking for SAFE Part Two sets CO₂ emissions standards and corporate average fuel economy (CAFE) standards for passenger vehicles and light duty trucks, covering model years 2021-2026. The U.S. EPA is currently reconsidering the SAFE rule.

2.5.2 CALIFORNIA REGULATIONS

The State of California legislature has enacted a series of bills that constitute the most aggressive programs and measures to reduce GHGs. Legislation such as the landmark AB 32 in 2006 was specifically enacted to address GHG emissions. Other legislation such as California Code of Regulations (CCR) Title 24 and Title 20 energy standards were originally adopted for other purposes such as energy and water conservation, but also provide GHG reductions. This section describes a summary of the major provisions of the legislation.

Assembly Bill 32 (California Global Warming Solutions Act of 2006)

AB 32 instructs CARB to develop and enforce regulations for the reporting and verification of statewide GHG emissions. AB 32 also directed CARB to set a GHG emissions limit based on 1990 levels, to be achieved by 2020. It set a timeline for adopting a scoping plan for achieving GHG reductions in a technologically and economically feasible manner.

CARB Scoping Plan

CARB adopted the Scoping Plan to achieve the goals of AB 32. The Scoping Plan establishes an overall framework for the measures that would be adopted to reduce California's GHG emissions. CARB determined that achieving the 1990 emissions level would require a reduction of GHG emissions of approximately 29 percent below what would otherwise occur in 2020 in the absence of new laws and regulations (referred to as "business-as-usual")². The Scoping Plan evaluates opportunities for sector-specific reductions, integrates early actions and additional GHG reduction measures by both CARB and

the State's Climate Action Team, identifies additional measures to be pursued as regulations, and outlines the adopted role of a cap-and-trade program³. Additional development of these measures and adoption of the appropriate regulations occurred through the end of 2013. Key elements of the Scoping Plan include:

- Expanding and strengthening existing energy efficiency programs, as well as building and appliance standards.
- Achieving a statewide renewables energy mix of 33 percent by 2020.
- Developing a California cap-and-trade program that links with other programs to create a regional market system and caps sources contributing 85 percent of California's GHG emissions (adopted in 2011).
- Establishing targets for transportation-related GHG emissions for regions throughout California and pursuing policies and incentives to achieve those targets (several sustainable community strategies have been adopted).
- Adopting and implementing measures pursuant to existing State laws and policies, including California's clean car standards, heavy-duty truck measures, the Low Carbon Fuel Standard (amendments to the Pavley Standard adopted 2009; Advanced Clean Car standard adopted 2012), goods movement measures, and the Low Carbon Fuel Standard (adopted 2009).
- Creating targeted fees, including a public goods charge on water use, fees on gasses with high global warming potential, and a fee to fund the administrative costs of the State of California's long-term commitment to AB 32 implementation.
- The California Sustainable Freight Action Plan was developed in 2016 and provides a vision for California's transition to a more efficient, more economically competitive, and less polluting freight transport system. This transition of California's freight transport system is essential to supporting the State's economic development in coming decades while reducing pollution.
- CARB's Mobile Source Strategy demonstrates how the State can simultaneously meet air quality standards, achieve GHG emission reduction targets, decrease health risk from transportation emissions, and reduce petroleum consumption over the next fifteen years. The mobile Source Strategy includes increasing zero emission vehicle (ZEV) buses and trucks.

In 2012, CARB released revised estimates of the expected 2020 emissions reductions. The revised analysis relied on emissions projections updated in light of current economic forecasts that accounted for the economic downturn since 2008, reduction measures already approved and put in place relating to future fuel and energy demand, and other factors. This update reduced the projected 2020 emissions from 596 million metric tons of CO₂e (MMTCO2e) to 545 MMTCO2e. The reduction in forecasted 2020 emissions means that the revised business-as-usual reduction necessary to achieve AB 32's goal of reaching 1990 levels by 2020 is now 21.7 percent, down from 29 percent. CARB also provided a lower 2020 inventory forecast that incorporated State-led GHG emissions reduction measures already in place. When this lower forecast is considered, the necessary reduction from business-as-usual needed to achieve the goals of AB 32 is approximately 16 percent.

CARB adopted the first major update to the Scoping Plan on May 22, 2014. The updated Scoping Plan

summarizes the most recent science related to climate change, including anticipated impacts to California and the levels of GHG emissions reductions necessary to likely avoid risking irreparable damage. It identifies the actions California has already taken to reduce GHG emissions and focuses on areas where further reductions could be achieved to help meet the 2020 target established by AB 32.

CARB adopted the Final 2017 Scoping Plan Update identifying the State's post 2020 reduction strategy and reflects the 2030 reduction target of 40% below 1990 levels as set by EO B-30-15 and codified in SB32.

2022 Scoping Plan For Achieving Carbon Neutrality

On December 15, 2022, CARB approved the final 2022 Scoping Plan for Achieving Carbon Neutrality (2022 Scoping Plan) which lays out a path to achieve targets for carbon neutrality and reduce anthropogenic greenhouse gas (GHG) emissions by 85 percent below 1990 levels no later than 2045, as directed by Assembly Bill 1279. The actions and outcomes in the plan are to achieve significant reductions in fossil fuel combustion by deploying clean technologies and fuels, further reductions in short-lived climate pollutants, support for sustainable development, increased action on natural and working lands to reduce emissions and sequester carbon, and the capture and storage of carbon.

The 2022 Scoping Plan contains the GHG reductions, technology, and clean energy mandated by statutes. The 2022 Scoping Plan was developed to achieve carbon neutrality by 2045 through a substantial reduction in fossil fuel dependence, while at the same time increasing deployment of efficient non-combustion technologies and distribution of clean energy. The plan would also reduce emissions of short-lived climate pollutants (SLCPs) and would include mechanical carbon dioxide (CO2) capture and sequestration actions, as well as emissions and sequestration from natural and working lands and nature-based strategies. Table 2.5-1 provides a summary of the actions of the scoping plan by sector.

SECTOR	ACTION
GHG emissions reductions relative to the SB 32 target	At least 40% below 1990 levels by 2030
Smart Growth / Vehicle Miles Travelled (VMT)	VMT per capita reduced 25% below 2019 levels by 2030
	and 30% below 2019 levels by 2045
Light-duty vehicle (LDV) Zero Emission Vehicles (ZEVs)	100% of LDV sales are ZEV by 2035
Truck ZEVs	AB 74 Institute of Transportation Studies report: 100% of
	medium duty/heavy duty vehicle sales are ZEV by 2040
Aviation	20% of aviation fuel demand is met by electricity
	(batteries) or hydrogen (fuel cells) in 2045.
	Sustainable aviation fuel meets most or the rest of the
	aviation fuel demand that has not already transitioned to
	hydrogen or batteries
Ocean-going Vessels (OGV)	2020 OGV At-Berth regulation fully implemented with
	most OGVs utilizing shore power by 2027
	25% of OGVs utilize hydrogen fuel cell electric technology by 2045

Table 2.5-1 Actions for the Scoping Plan Scenario: AB 32 GHG Inventory Sectors

Port Operations	Executive Order N-79-20: 100% of cargo handling equipment is zero-emission by 2037
	100% of drayage trucks are zero emission by 2035
Freight and Passenger Rail	100% of passenger and other locomotive sales are ZEV by 2030
	100% of line haul locomotive sales are ZEV by 2035
	Line haul and passenger rail rely primarily on hydrogen fuel cell technology, and others primarily utilize electricity
Oil & Gas Extraction	Operations to be reduced in-line with petroleum demand
Petroleum Refining	CCS is delayed until 2028 to allow for permitting and SB 905 related pipeline safety regulations to be in effect. Amount of CCS continues to be limited to large units at a refinery site.
	Production reduced in line with petroleum demand
Electricity Generation, Transmission and Distribution	100% zero carbon for retail sales by 2045
	Procurement of zero carbon electricity between 2030 and 2045 with an offshore wind target of 20 GW in 2045
	Retail sales load coverage CCS on some electricity generation by 2045
	Transmission and distribution infrastructure development to complement electrification and grid resiliency efforts
Carbon Dioxide Removal/Carbon Capture and	2030 target for carbon dioxide removal and carbon
Sequestration	capture of 20 MMT CO2e and 2045 target of 100 MMT
	CO2e; per AB 1279, ensure 85% reduction in
	anthropogenic emissions from 1990 levels by 2045
New Residential and Commercial Buildings	All electric appliances beginning 2026 (residential) and 2029 (commercial)
Existing Commercial Buildings	80% of appliance sales are electric by 2030 and 100% of appliance sales are electric by 2045
	Appliances are replaced at the end of life
Construction Equipment	25% energy demand electrified by 2030 and 75% by 2045
Other Industrial Manufacturing	0% energy demand electrified by 2030 and 50% by 2045
Combined Heat and Power	Facilities retire by 2040
Agriculture Energy Use	25% energy demand electrified by 2030 and 75% by 2045
Low Carbon Fuels for Transportation	Biomass supply used to produce conventional and advanced biofuels, as well as hydrogen
Low Carbon Fuels for Buildings and Industry	In 2030s, RNG blended in pipeline
	Renewable hydrogen blended in natural gas pipeline at 7% energy (~20% by volume), ramping up between 2030 and 2040
	In 2030s, dedicated hydrogen pipelines constructed to serve certain industrial clusters
Non-combustion Methane Emissions	Increase landfill and dairy digester methane capture
	Some alternative manure management deployed for smaller dairies
	Moderate adoption of enteric strategies by 2030 Divert 75% of organic waste from landfills by 2025

	Oil and gas fugitive methane emissions reduced 50% by 2030 and further reductions as infrastructure components retire in line with reduced natural gas demand
High Global Warming Potential (GWP) Emissions	Low GWP refrigerants introduced as building
	electrification increases, mitigating hydrofluorocarbon
	(HFC) emissions

The 2022 Scoping Plan also identifies local governments as critical partners with efforts to reduce GHGs within their jurisdiction which are necessary for achieving the State's long-term climate goals. The 2022 Scoping Plan states that local governments have responsibility and authority over the built environment, transportation networks, and provision of local services. For example, local governments have primary authority to plan, zone, approve, and permit how and where land is developed to accommodate population and employment growth and the changing needs of their jurisdictions. They make decisions on how and when to deploy transportation infrastructure and can promote residential and commercial development that supports transit, bicycling, and walking. Local governments have the authority to adopt building ordinances that exceed statewide building code requirements and facilitate the implementation of zero-emission vehicle (ZEV) infrastructure.

The 2022 Scoping Plan discusses the implications for sustainable development on equity and environmental justice as part of a strategy to combat climate change and provides the following recommendations to local governments for:

- Developing local CAPs and strategies consistent with the State's GHG emission reduction goals;
- Incorporating State-level GHG priorities into their processes for approving land use plans and individual projects;
- Implementing CEQA mitigation, as needed, to reduce GHG emissions associated with new land use development projects; and
- Leveraging opportunities for regional collaboration.

Senate Bill (SB) 32 and AB 197.

SB 32 and AB 197 (enacted in 2016) are companion bills. SB 32 codified the 2030 emissions reduction goal of Executive Order (EO) B-30-15 by requiring CARB to ensure that statewide GHG emissions are reduced to 40% below 1990 levels by 2030. AB 197 established the Joint Legislative Committee on Climate Change Policies, consisting of at least three members of the Senate and three members of the Assembly, in order to provide ongoing oversight over implementation of the state's climate policies. AB 197 also added two members of the Legislature to the CARB Board as nonvoting members; requires CARB to make available and update (at least annually via its website) emissions data for GHGs, criteria air pollutants, and TACs from reporting facilities; and requires CARB to identify specific information for GHG emissions reduction measures when updating the Scoping Plan.

AB 1493 (Pavley Regulations and Fuel Efficiency Standards)

AB 1493, enacted on July 22, 2002, required CARB to develop and adopt regulations that reduce GHGs emitted by passenger vehicles and light duty trucks. Implementation of the regulation was delayed by lawsuits filed by automakers and by the EPA's denial of an implementation waiver. The EPA subsequently granted the requested waiver in 2009, which was upheld by the U.S. District Court for

the District of Columbia in 2011. The regulations establish one set of emission standards for model years 2009–2016 and a second set of emissions standards for model years 2017 to 2025. By 2025, when all rules will be fully implemented, new automobiles will emit 34 percent fewer CO₂e emissions and 75 percent fewer smog- forming emissions.

California Code of Regulations

The California Code of Regulations (CCR) is the official compilation and publication of regulations adopted, amended, or repealed by the state agencies pursuant to the Administrative Procedure Act (APA). The CCR includes regulations that pertain to GHG emissions specifically Title 20 Appliance Efficiency, Title 24 Building Energy Efficiency Standards and California Green Building Standards Code.

Title 20 Appliance Efficiency Regulations

The California Energy Commission (CEC) first developed the Appliance Energy Efficiency Standards in 1977. The appliance efficiency regulations (California Code of Regulations [CCR] Title 20, Sections 1601-1608) include standards for new appliances and set minimum efficiency levels for energy and water consumption in products, such as consumer electronics, household appliances, and plumbing equipment.

Title 24 Building Energy Efficiency Standards

California's Energy Efficiency Standards for Residential and Nonresidential Buildings (CCR Title 24, Part 6), was first adopted in 1978 in response to a legislative mandate to reduce California's energy consumption. The standards are updated periodically to allow consideration and possible incorporation of new energy efficient technologies and methods. Energy efficient buildings require less electricity; therefore, increased energy efficiency reduces fossil fuel consumption and decreases GHG emissions. The 2016 Building Energy Efficiency Standards approved on January 19, 2016 went into effect on January 1, 2017. The 2019 Building Energy Efficiency Standards were adopted on May 9, 2018 and took effect on January 1, 2020. Under the 2019 standards, homes will use about 53 percent less energy and nonresidential buildings will use about 30 percent less energy than buildings under the 2016 standards.

Title 24 California Green Building Standards Code

The California Green Building Standards Code (CCR Title 24, Part 11 code) commonly referred to as the CALGreen Code, is a statewide mandatory construction code developed and adopted by the California Building Standards Commission and the Department of Housing and Community Development. The CALGreen standards require new residential and commercial buildings to comply with mandatory measures under the topics of planning and design, energy efficiency, water efficiency/conservation, material conservation and resource efficiency, and environmental quality. CALGreen also provides voluntary tiers and measures that local governments may adopt that encourage or require additional measures in the five green building topics. The most recent update to the CALGreen Code went into effect January 1, 2017. Updates to the 2016 CALGreen Code took effect on January 1, 2020 (2019 CALGreen). The 2019 CALGreen standards continue to improve upon the existing standards for new construction of, and additions and alterations to, residential and nonresidential buildings.

Tractor Trailer Greenhouse Gas (TTGHG) Regulation

The California Air Resources Board (CARB) approved the Tractor-Trailer Greenhouse Gas (TTGHG) Regulation in 2008 to reduce greenhouse gas emissions by improving the aerodynamic performance and reducing the rolling resistance of tractor-trailers. The TTGHG Regulation took effect in 2010. The reduction in greenhouse gas emissions will be achieved by requiring the use of aerodynamic technologies on tractors and trailers, along with requiring the use of low rolling resistance tires. In addition to reducing greenhouse gas emissions, this regulation will reduce fuel consumption, thereby saving fleets money, and reduce our nation's dependence on fossil fuel.

California Attorney General's Bureau of Environmental Justice, (Warehouse Projects: Best Practices and Mitigation Measures to Comply with the California Environmental Quality Act)

The document builds upon the California Attorney General's Bureau of Environmental Justice (Bureau) reviews of proposed warehouse project for compliance with CEQA. The document includes input from comment letters, and knowledge gained from the Bureau's review of warehouse projects across the State. The document provides guidance to lead agencies providing information on feasible best practices and mitigation measures, adapted from actual warehouse projects in the State.

GHG Standards for Medium- and Heavy-Duty Engines and Vehicles

CARB has adopted greenhouse gas (GHG) standards that largely align with the U.S. Environmental Protection Agency (EPA) and the National Highway Traffic Safety Administration (NHTSA) for new medium- and heavy-duty engines, vehicles, and trailers sold in California. The regulations will reduce GHG emissions from on-road medium- and heavy-duty vehicles.

Major Climate Legislation and Executive orders Since 2017 Scoping Plan

Table 2.5-2: Major Climate Legislation & Executive Orders Since 2017 Scoping Plan

Assembly Bill 1279 (AB 1279) (Muratsuchi, Chapter 337,	AB 1279 establishes the policy of the state to achieve
Statutes of 2022)	carbon neutrality as soon as possible, but no later than
The California Climate Crisis Act	2045; to maintain net negative GHG emissions thereafter; and to ensure that by 2045 statewide anthropogenic GHG emissions are reduced at least 85 percent below 1990 levels. The bill requires CARB to ensure that Scoping Plan updates identify and recommend measures to achieve carbon neutrality, and to identify and implement policies and strategies that enable CO2 removal solutions and carbon capture, utilization, and storage (CCUS) technologies.
	This bill is reflected directly in the 2022 Scoping Plan.
Senate Bill 905 (SB 905) (Caballero, Chapter 359, Statutes of 2022) Carbon Capture, Removal, Utilization, and Storage Program	SB 905 requires CARB to create the Carbon Capture, Removal, Utilization, and Storage Program to evaluate, demonstrate, and regulate CCUS and carbon dioxide removal (CDR) projects and technology. The bill requires CARB, on or before January 1, 2025, to adopt regulations creating a unified state permitting application for approval of CCUS and CDR projects. The bill
	also requires the Secretary of the Natural Resources Agency to publish a framework for governing agreements for two or more tracts of land overlying the same geologic

	storage reservoir for the purposes of a carbon sequestration project.
	The 2022 Scoping Plan modeling reflects both CCUS and CDR contributions to achieve carbon neutrality.
Senate Bill 1020 (SB 1020) (Laird, Chapter 361, Statutes of 2022)	SB 1020 adds interim renewable energy and zero carbon energy retail sales of electricity targets to California end-
Clean Energy, Jobs, and Affordability Act of 2022	use customers set at 90 percent in 2035 and 95 percent in 2040.
	renewable energy and zero carbon energy procured to serve state agencies from the original target year of 2045 to 2035. This bill requires each state agency to individually achieve the 100 percent goal by 2035 with specified requirements. This bill requires the CPUC, California Energy Commission (CEC), and CARB, on or before December 1, 2023, and annually thereafter, to issue a joint reliability progress report that reviews system and local reliability. The bill also modifies the requirement for CARB to hold a portion of its Scoping Plan workshops in regions of the state with the most significant exposure to air pollutants by further specifying that this includes communities with
	minority populations or low-income communities in areas designated as being in extreme federal non-attainment. The 2022 Scoping Plan describes the implications of this
	legislation on emissions.
of 2022) Hydrogen: Green Hydrogen: Emissions of Greenhouse Gases	sB 1075 requires CARB, by June 1, 2024, to prepare an evaluation that includes: policy recommendations regarding the use of hydrogen, and specifically the use of green hydrogen, in California; a description of strategies supporting hydrogen infrastructure, including identifying policies that promote the reduction of GHGs and short- lived climate pollutants; a description of other forms of hydrogen to achieve emission reductions; an analysis of curtailed electricity; an estimate of GHG and emission reductions that could be achieved through deployment of
	green hydrogen through a variety of scenarios; an analysis of the potential for opportunities to integrate hydrogen production and applications with drinking water supply treatment needs; policy recommendations for regulatory and permitting processes associated with transmitting and distributing hydrogen from production sites to end uses; an analysis of the life-cycle GHG emissions from various forms of hydrogen production; and an analysis of air pollution and other environmental impacts from hydrogen distribution and end uses.
	This bill would inform the production of hydrogen at the scale called for in the 2022 Scoping Plan.
Senate Bill 1206 (SB 1206) (Skinner, Chapter 884, Statutes of 2022)	SB 1206 mandates a stepped sales prohibition on newly produced high- global warming potential (GWP) HFCs to
Hydrofluorocarbon gases: sale or distribution	transition California's economy toward recycled and reclaimed HFCs for servicing existing HFC-based equipment. Additionally, SB 1206 also requires CARB to develop regulations to increase the adoption of very low-,

	i.e., GWP < 10, and no-GWP technologies in sectors that
	currently rely on higher-GWP HFCs.
Senate Bill 596 (SB 596) (Becker, Chapter 246, Statutes of	SB 596 requires CARB, by July 1, 2023, to develop a
2021)	comprehensive strategy for the state's cement sector to
Greenhouse Gases: Cement Sector: Net-zero Emissions	achieve net-zero-emissions of GHGs associated with
Strateav	cement used within the state as soon as possible, but no
	later than December 31, 2045. The bill establishes an
	interim target of 40 percent below the 2019 average GHG
	intensity of cement by December 31, 2035. Under SB 596,
	CARB must:
	Define a metric for GHG intensity and establish a baseline from which to measure CHC intensity reductions
	Further the feasibility of the 2025 interim target (40
	• Evaluate the leasibility of the 2055 Internit target (40
	Coordinate and consult with other state agencies
	Prioritize actions that leverage state and federal
	incentives
	• Evaluate measures to support market demand and
	financial incentives to encourage the production and use
	of cement with low GHG intensity.
Executive Order N-79-20	Governor Newsom signed Executive Order N-79-20 in
	September 2020 to establish targets for the transportation
	sector to support the state in its goal to achieve carbon
	neutrality by 2045. The targets established in this
	Executive Order are:
	 100 percent of in-state sales of new passenger cars and
	trucks will be zero-emission by 2035.
	• 100 percent of medium- and heavy-duty vehicles will be
	zero-emission by 2045 for all operations where feasible,
	and by 2035 for drayage trucks.
	 Too percent of on-road venicles and equipment will be zero-emission by 2025 where feasible
	zero-emission by 2000 where reasible.
	The Executive Order also tasked CARB to develop and
	propose regulations that require increasing volumes of
	zero-electric passenger vehicles, medium- and heavy-duty
	venicies, drayage trucks, and off-road venicies toward
	by 2035 or 2045, as listed above.
Executive Order B-55-18	Governor Brown signed Executive Order B-55-18 in
	September 2018 to establish a statewide goal to achieve
	carbon neutrality as soon as possible, and no later than
	2045, and to achieve and maintain net negative emissions
	thereafter. Policies and programs undertaken to achieve
	• Seek to improve air quality and support the health and
	economic resiliency of urban and rural communities
	particularly low-income and disadvantaged communities
	• Be implemented in a manner that supports climate
	adaptation and biodiversity, including protection of the
	state's water supply, water guality, and native plants and
	animals.
	This Executive Order also calls for CARB to:
	Develop a framework for implementation and
	accounting that tracks progress toward this goal.

	• Ensure future Scoping Plans identify and recommend measures to achieve the carbon neutrality goal.
	The 2022 Scoping Plan is designed to achieve carbon neutrality no later than 2045 and the modeling includes technology and fuel transitions to achieve that outcome.
Senate Bill 100 (SB 100) (De León, Chapter 312, Statutes of 2018) California Renewables Portfolio Standard Program: emissions of greenhouse gases	 SB 100 mandates that the CPUC, CEC, and CARB plan for 100 percent of total retail sales of electricity in California to come from eligible renewable energy resources and zero-carbon resources by December 31, 2045. This bill also updates the state's Renewables Portfolio Standard (RPS) to include the following interim targets: 44% of retail sales procured from eligible renewable sources by December 31, 2024. 52% of retail sales procured from eligible renewable sources by December 31, 2027. 60% of retail sales procured from eligible renewable sources by December 31, 2027.
	Under SB 100, the CPUC, CEC, and CARB shall use programs under existing laws to achieve 100 percent clean electricity. The statute requires these agencies to issue a joint policy report on SB 100 every four years. The first of these reports was issued in 2021. The 2022 Scoping Plan reflects the SB 100 Core Scenario
	resource mix with a few minor updates.
Assembly Bill 2061 (AB 2061) (Frazier, Chapter 580, Statutes of 2018)	Existing state and federal law sets specified limits on the total gross weight imposed on the highway by a vehicle with any group of two or more conceptive pulse. Update
Near-zero-emission and Zero-emission Vehicles	with any group of two or more consecutive axies. Under existing federal law, the maximum gross vehicle weight of that vehicle may not exceed 82,000 pounds. AB 2061 authorizes a near-zero-emission vehicle or a zero-emission vehicle to exceed the weight limits on the power unit by up to 2,000 pounds.

2.6 Applicable Policies and Programs

City of Victorville

Climate Action Plan (CAP)

The City of Victorville Climate Action Plan (CAP) was adopted in 2015 to present the GHG inventories, identify the effectiveness of California initiatives to reduce GHG emissions, and identify local measures that were selected by the City to reduce GHG emissions under the City's jurisdictional control to

achieve the City's identified reduction targets per AB32 2020 GHG target. The City's CAP is currently being updated to provide for post 2020 GHG emissions reduction targets.

As part of the City's CAP projects are required to complete and implement the Greenhouse Gas Emissions Screening Table Review Measures form (GHG Screening Table) providing for a minimum 100 points.

General Plan Policies and Implementation Measures

Local air quality within Victorville varies from place to place and depends on both regional wind patterns and proximity to local pollution sources. The City of Victorville General Plan contains a variety of policies and implementation measures that address air quality improvement and GHG reduction. The following policies and implementation measures would apply to the project.

Policy 6.1.1: Encourage planning and development activities, that reduce the number and length of single occupant automobile trips.

Implementation Measure 6.1.1.1: Require large projects (exceeding 150,000 square feet of development) to incorporate Transportation Demand Management (TDM) techniques, such as promoting carpooling and transit, as a condition of project approval.

Policy 7.2.1: Support energy conservation by requiring sustainable building design and development for new residential, commercial, and industrial projects.

- Implementation Measure 7.2.1.2: Minimize energy use of new residential, commercial, and industrial projects by requiring high efficiency heating, lighting, and other appliances, such as cooking equipment, refrigerators, furnaces, overhead and area lighting, and low NOx water heaters.
- Implementation Measure 7.2.1.3: Require drought tolerant landscaping in all new private developments.

3 POTENTIAL PROJECT GREENHOUSE GAS IMPACTS

3.1 INTRODUCTION

The Project has been evaluated to determine if it will violate a GHG regulation, plan, standard, or policy. Additionally, the Project has been evaluated to determine if it will result in a cumulatively considerable net increase of GHG. The significance of these potential impacts is described in the following section.

3.2 THRESHOLDS OF SIGNIFICANCE

The criteria used to determine the significance of potential Project-related air quality impacts are taken from the Initial Study Checklist in Appendix G of the State CEQA Guidelines, California Code of Regulations §15000, et seq. Based on these thresholds, a project would result in a significant impact related to air quality if it would:

- Generate GHG emissions, either directly or indirectly, that may have a significant impact on the environment.
- Conflict with an applicable plan, policy, or regulation adopted for the purpose of reducing the emissions of GHGs.

The MDAQMD has developed regional significance thresholds for regulated pollutants, shown below in Table 3.2-1. The MDAQMD's CEQA And Federal Conformity Guidelines (February 2020) indicate that any projects in the MDAB with daily regional emissions that exceed any of the indicated thresholds should be considered as having an individually and cumulatively significant air quality impact.

Currently neither the CEQA statutes, OPR guidelines, nor the draft proposed changes to the CEQA Guidelines prescribe thresholds of significance or a particular methodology for performing an impact analysis; as with most environmental topics, significance criteria are left to the judgment and discretion of the Lead Agency. The MDAQMD has identified thresholds of 100,000 tons per year (90,718 MTCO₂e/year) or 548,000 pounds per day of CO₂e emissions for individual projects. The MDAQMD thresholds were used in this analysis.

Criteria Pollutant	Annual Threshold (short tons)	Daily Threshold (pounds)
Greenhouse Gases (CO ₂ e)	100,000	548,000
Carbon Monoxide (CO)	100	548
Oxides of Nitrogen (NO _X)	25	137
Volatile Organic Compounds (VOC)	25	137
Oxides of Sulfur (SO _X)	25	137
Particulate Matter (PM10)	15	82
Particulate Matter (PM2.5)	12	65
Hydrogen Sulfide (H ₂ S)	10	54
Lead (Pb)	0.6	3

TABLE 3.2-1: SIGNIFICANT EMISSIONS THRESHOLDS

3.3 CALIFORNIA EMISSIONS ESTIMATOR MODEL

Land uses such as the proposed Project affect air quality through construction-source and operational- source emissions.

The SCAQMD in conjunction with the California Air Pollution Control Officers Association (CAPCOA) and other California air districts, released the latest version of the California Emissions Estimator Model (CalEEMod) version 2020.4.0. The purpose of this model is to calculate construction and operational-source criteria pollutant (NOx, VOC, PM10, PM2.5, SOx, and CO) and greenhouse gas (GHG) emissions from direct and indirect sources; and quantify applicable air quality and GHG reductions achieved from mitigation measures. Accordingly, the latest version of CalEEMod has been used for this Project to determine construction, operational air quality, and GHG emissions. Datasheet outputs from the model runs are provided in Appendix A.

3.4 CONSTRUCTION EMISSIONS

Construction activities associated with the Project will result in emissions of CO, VOCs, NOx, SOx, PM₁₀, PM_{2.5}, and Greenhouse Gases. The Construction emissions for VOC, NOx, CO, Sox, PM10 and PM2.5 are assessed as part of the Project's Air Quality Impact Analysis. Construction related GHG emissions are expected from the following construction activities:

- Site Preparation
- Grading
- Building Construction
- Paving
- Architectural Coating
- Materials Deliveries and Construction Workers Commuting

Construction is expected to commence in September 2023 and will last through September 2024, approximately 13 months. Construction duration by phase is shown on Table 3.4-1. The construction schedule utilized in the analysis represents a "worst-case" analysis scenario should construction occur any time after the respective dates since emission factors for construction decrease as time passes and the analysis year increases due to emission regulations becoming more stringent.² The duration of construction activity and associated equipment represents a reasonable approximation of the expected construction fleet as required per CEQA guidelines. Site specific construction fleet may vary due to specific project needs at the time of construction. The duration of construction activity was based on an estimated schedule for the various construction phases from the Project applicant and a scheduled 2024 opening year. The associated construction equipment was based on CalEEMod 2020.4.0 defaults. Please refer to specific detailed modeling inputs/outputs contained in Appendix A of this analysis. A detailed summary of construction equipment assumptions by phase is provided at Table 3.4-2.

² As shown in the California Emissions Estimator Model (CalEEMod) User's Guide Version 2020.4.0, Section 4.3"OFFROAD Equipment" as the analysis year increases, emission factors for the same equipment pieces decrease due to the natural turnover of older equipment being replaced by newer less polluting equipment and new regulatory requirements.

TABLE 5.4-1. CONSTRUCTION DURATION					
Phase Name	Start Date	End Date	Days		
Site Preparation	09/01/2023	10/12/2023	30		
Grading	10/13/2023	12/23/2023	51		
Building Construction	12/23/2023	09/30/2024	201		
Paving	06/01/2024	09/30/2024	86		
Architectural Coatings	06/01/2024	09/30/2024	86		

TABLE 3.4-1: CONSTRUCTION DURATION

TABLE 3.4-2: CONSTRUCTION EQUIPMENT ASSUMPTIONS

Activity	Equipment	Number	Hours Per Day
City Descention	Rubber Tired Dozers	3	8
Site Preparation	Tractors/Loaders/Backhoes	4	8
	Excavators	2	8
	Graders	1	8
Graders	Rubber Tired Dozers	1	8
	Scrapers	2	8
	Tractors/Loaders/Backhoes	2	8
	Cranes	1	7
Building Construction	Forklifts	3	8
	Generator Sets	1	8
	Tractors/Loaders/Backhoes	3	7
	Welders	1	8
	Pavers	2	8
Paving	Paving Equipment	2	8
	Rollers	2	8
Architectural Coating	Air Compressors	1	6

Construction emissions for construction worker vehicles traveling to and from the Project site, as well as vendor trips (construction materials delivered to the Project site) were estimated based on information CalEEMod model defaults.

3.4.1 CONSTRUCTION EMISSIONS SUMMARY

Impacts without Mitigation

The estimated maximum daily construction emissions without mitigation are summarized on Table 3.4-3. Detailed construction model outputs are presented in Appendix A. For Construction related Project GHG emissions the GHGs are quantified using CalEEMod and amortized over the life of the project. The MDAQMD recommendation is to amortize using a 30-year project life.

Under the anticipated schedule and equipment scenarios, GHG emissions resulting from the Project construction would not exceed thresholds established by the MDAQMD for emissions of any criteria pollutant. As such, the Project will have a less than significant impact during on-going construction activity and no mitigation is required.

		GHG Emissions MT/yr.			
Source	N2O	CO2	CH4	CO2e	
Construction 2023	0.005	240.33	0.0632	243.33	
Construction 2024	0.085	1,321.04	0.0985	1,348.82	
Total Construction	0.090	1,561.37	1.617	1,592.15	
30-year Amortized Construction GHG	Tons/Year / Metric Tons / Year			53.07/58.50	
MDAQMD Threshold	100,000 Tons/Year / 90,718.5 MT/Year ³			100,000/90,718.5	
Exceed Threshold?				NO	

TABLE 3.4-3: CONSTRUCTION GHG EMISSIONS

3.5 **OPERATIONAL EMISSIONS**

Operational activities associated with the proposed Project will result in emissions of VOC, NOx, CO, SOx, PM₁₀, PM_{2.5}, and Greenhouse Gases. The Operational emissions for VOC, NOx, CO, Sox, PM10 and PM2.5 are assessed as part of the Project's Air Quality Impact Analysis. Operational GHG emissions would be expected from the following primary sources:

- Area Source Emissions
- Energy Source Emissions
- Mobile Source Emissions
- On-site equipment
- Transport Refrigeration Unit (TRU) Emissions

3.5.1 AREA SOURCE EMISSIONS

Consumer Products

Consumer products include, but are not limited to detergents, cleaning compounds, polishes, personal care products, and lawn and garden products. Many of these products contain organic compounds which when released in the atmosphere can react to form ozone and other photochemically reactive pollutants. The emissions associated with use of consumer products were calculated based on assumptions provided in the CalEEMod model. In the case of the commercial uses proposed by the Project, no substantive on-site use of consumer products is anticipated.

Landscape Maintenance Equipment

Landscape maintenance equipment would generate emissions from fuel combustion and evaporation of unburned fuel. Equipment in this category would include lawnmowers, shredders/grinders, blowers, trimmers, chain saws, and hedge trimmers used to maintain the landscaping of the Project. The emissions associated with landscape maintenance equipment were calculated based on assumptions provided in the CalEEMod model.

³ CalEEMod GHG Emissions for GHG CO2e is calculated in Metric Tons (MT) per year.

3.5.2 ENERGY SOURCE EMISSIONS

Combustion Emissions Associated with Natural Gas and Electricity

Electricity and natural gas are used by almost every project. Criteria pollutant emissions are emitted through the generation of electricity and consumption of natural gas. The emissions associated with natural gas and electricity use were calculated using the CalEEMod model.

3.5.3 MOBILE SOURCE EMISSIONS

Vehicles

Project-related operational air quality impacts derive primarily from vehicle trips generated by the Project. Trip characteristics for operational truck and passenger vehicle totals are available from the Traffic Study Scope and Vehicle Miles Traveled (VMT) Screening Memorandum (Appendix B).

3.5.4 TRANSPORT REFRIGERATION UNITS (TRU)

Transport Refrigeration Units (TRU) are refrigeration systems powered by diesel internal combustion engines (ICEs) designed to refrigerate or heat perishable products that are transported in various containers, including vans, trucks, semi-truck trailers, and shipping containers.

To account for the operations of TRUs on-site the number of refrigerated trucks/trailers was estimated using the Traffic Study and Vehicle Miles Traveled (VMT) Screening Memo from David Evans and Associates, dated September 26, 2022. According to the Memo's Trip Generation Table the average daily trips for the Cold Storage portion of the building would be approximately 97 trucks per day. For determining emissions from the TRUs they were estimated to be 50 horsepower (HP) units operating on diesel fuel for a period of 4 hours on-site. The 4-hour operational time is a worse-case scenario as typical TRUs range from 9 to 36 horsepower⁴, and emissions can be substantially reduced through the implementation of MM-AQ-6, which requires installation of electrical plugs for electric transport units at each dock door servicing the Cold Storage portion of the Project.

To calculate the emissions for the TRUs the CARB EMFAC OFFROAD2021 (v1.0.3) was used to obtain emissions factors and multiplied by the daily number of trucks and the estimated hours of on-site operation. The output table for emissions factors is included as Appendix C.

3.5.5 ON-SITE EQUIPMENT EMISSIONS

An Industrial warehouse project commonly requires cargo handling equipment (CHE) to move empty containers and empty chassis to and from the various pieces of cargo handling equipment that receive and distribute containers. The most common type of cargo handling equipment is the yard truck which is designed for moving cargo containers. Yard trucks are also known as yard goats, utility tractors (UTRs), hustlers, yard hostlers, and yard tractors. Yard trucks have a horsepower (hp) range of approximately 175 hp to 200 hp. Based on surveys conducted by the SCAQMD; highcube warehouse projects typically have 3.6-yard trucks per million square feet of building space. For the Project, on-site modeled operational equipment includes four (4) 200 hp yard tractors operating at 8 hours a day for 365 days of the year. In addition to the use of yard trucks operating at the Project site, forklifts and pallet jacks are also common pieces of equipment used in warehouse operations. As part of the Project's design, all on-site outdoor CHE (including yard

⁴ California Air Resources Board (CARB) Transport Refrigeration Unit retrieved November 23, ,2022 from: <u>https://ww2.arb.ca.gov/our-work/programs/transport-refrigeration-unit/about</u>

trucks, hostlers, yard goats), will be powered by compressed natural gas, propane, or electric engines while all forklift and pallet jacks will be electric powered. Using the CalEEMod program the emissions from UTRs were calculated using the Tractor/Loader/Backhoe equipment, operating at 200 HP on CNG. Using the SCAQMD's study on high-cube warehouses forklifts/pallet jacks are based on 0.12 per 1,000 square feet of building area, therefore the Project includes 120 forklifts/pallet jacks operating at 8 hours a day for 365 days of the year interior to the building. For purposes of the GHG analysis forklifts and pallet jacks are assumed to be electric consistent with industry standards.

3.5.6 OPERATIONAL EMISSIONS SUMMARY

Operational-source emissions with amortized construction GHG Annual emissions are summarized in Table 3.5-1. Detailed operational model outputs are presented in the CalEEMod datasheets in Appendix A.

		GHG Emissions MT/yr.			
Source	N2O	CO2	CH4	CO2e	
Area	0.00	0.029	0.00008	0.0308	
Energy	0.03	2,625.70	0.177	2,639.75	
Mobile Sources	0.21	2,351.50	0.048	2,414.6	
On-Site Equipment	0.00	199.84	0.065	201.46	
TRU				207.20	
Solid Waste	0.00	209.30	12.37	518.52	
Water/Wastewater	0.20	669.43	8.25	935.13	
30-year Amortized Construction GHG				53.07/58.50	
TOTAL	Tons/Year / Metric Tons / Year			7,689 / 6,975	
MDAQMD Threshold		100,000 Tons/Year / 90,718 MT/Year ⁵			
Exceed Threshold?				NO	

TABLE 3.5-1: SUMMARY OF PEAK OPERATIONAL ANNUAL EMISSIONS

3.6 GREENHOUSE GAS EMISSIONS ANALYSIS

As discussed in Section 3.2 the Project's potential GHG impacts are based on two thresholds 1) Would the Project generate GHG emissions, either directly or indirectly, that may have a significant impact on the environment and 2) Would the Project conflict with an applicable plan, policy, or regulation adopted for the purpose of reducing the emissions of GHGs.

3.6.1 GHG THRESHOLD #1

Would the Project generate GHG emissions, either directly or indirectly, that may have a significant impact on the environment?

The City uses the MDAQMD significance thresholds to determine a project's impacts on GHG emissions. The thresholds established by the MDAQMD for GHG emissions included an annual threshold of 100,000 short tons CO₂e per year (90,718 MTCO₂e/year) and a daily threshold of 548,000 pounds per day.

⁵ CalEEMod GHG Emissions for GHG CO2e is calculated in Metric Tons (MT) per year.

According to the MDAQMD's CEQA Guidelines if a project is deemed to not exceed these thresholds, then it is deemed to not be significant, if it is consistent with the existing land use plan. The Project's GHG Emissions are included in Tables 3.4-3: Construction GHG Emissions and 3.5-1 Summary of Peak Operational Annual GHG Emissions and summarized below in Table 3.6-1 Summary of Project's Peak Daily and Annual GHG Emissions.

The Project's annual GHG Emissions for operations would result in 7,689 short tons $CO_2e/year$ (6,975 MTCO₂e/year) and as such would not exceed the annual threshold of 100,000 short tons CO_2e per year (90,718 MTCO₂e/year). The Project's annual GHG Emissions from construction would result in 1,487 short tons $CO_2e/year$ (1,349 MTCO₂e/year) and as such would not exceed the annual threshold of 100,000 short tons CO_2e per year (90,718 MTCO₂e/year).

Additionally, the Project's daily emissions for construction and operations would be below the MDAQMD's threshold of 548,000 pounds CO₂e per day, with construction estimated at 21,278 pounds CO₂e per day in the first construction year and 17,735 pounds CO₂e in the second year of construction. Operational daily GHG emissions are estimated to be 20,270 pounds CO₂e per day.

Therefore, the Project does not exceed the MDAQMD's daily or annual GHG significance thresholds the Project's impact is deemed to be less than significant.

Tuble 5.6 I Summary of Project 5 Peak Daily and Annual Grie Emissions					
GHG Emissions Source	Daily Emissions	Daily Threshold	Annual Emissions Tons / Metric Tons	Annual Threshold Tons/Metric Tons	Exceeds Threshold?
Construction 2023	21,278	548,000	268 / 243	100,000 / 90,718	NO
Construction 2024	17,735	548,000	1,487 / 1,349	100,000 / 90,718	NO
Operations	20,270	548,000	7,460 / 6,768	100,000 / 90,718	NO

Table 3.6-1 Summary of Project's Peak Daily and Annual GHG Emissions

3.6.2 GHG THRESHOLD #2

Would the Project conflict with an applicable plan, policy, or regulation adopted for the purpose of reducing the emissions of GHGs?

In determining the Project's impacts for Threshold #2 the Project was evaluated for consistency with the CARB's 2022 Scoping Plan and the City's CAP GHG Screening Table.

CARB 2022 Scoping Plan

On December 15, 2022, CARB adopted the Final 2022 Scoping Plan Update, which identifies the State's progress towards the statutory 2030 target, while providing a path towards carbon neutrality and reduce greenhouse gases emissions by 85% below 1990 levels by 2045. Recent studies show that the State's existing and proposed regulatory framework will allow the State to reduce its GHG emissions level to 40% below 1990 levels by 2030 (55). The Project would not conflict with any of the 2022 Scoping Plan elements as any regulations adopted would apply directly or indirectly to the Project.

Additionally, the Project is consistent with the general plan land use designation, density, building intensity, and applicable policies specified for the Project area in SCAG's Sustainable Community Strategy/Regional Transportation Plan, which pursuant to SB 375 calls for the integration of transportation, land-use and housing policies to plan for achievement of the GHG-emissions target for the region. Therefore, the Project will have a less than significant impact related to GHG emissions from construction and operation.

Victorville GHG Emissions Screening Table Review Measures

Projects in the City of Victorville are required to complete the GHG Emission Screening Table Review Measures and achieve a minimum of 100 points. Appendix D is a copy of a GHG Emissions Screening Table Review Measures Project Draft, and contains an example of how the Project can achieve 100 points on the Screening Table. Section 4 Mitigation Measures contains CAP Mitigation Measure MM-GHG-1: GHG Emissions Screening Table Review Measures and outlines the requirements for approval of the proposed measures the Project will implement.

Therefore, the project would not conflict with any applicable plan, policy, or regulation of an agency adopted for the purpose of reducing the emissions of greenhouse gases. Furthermore, the project will also comply with applicable Green Building Standards and City of Victorville's CAP policies and impacts are considered to be less than significant.

3.7 CUMULATIVE IMPACTS

According to CAPCOA, "GHG impacts are exclusively cumulative impacts; there are no noncumulative GHG emission impacts from a climate change perspective."⁶ The resultant consequences of that climate change can cause adverse environmental effects. A project's GHG emissions typically would be very small in comparison to state or global GHG emissions and, consequently, they would, in isolation, have no significant direct impact on climate change.

Individual projects that do not generate operational or construction emissions that exceed the MDAQMD's recommended daily and annual thresholds for project-specific impacts would also not cause a cumulatively considerable increase in GHG, and, therefore, would not be considered to have a significant, adverse GHG impact. As previously noted, the Project construction-source and operational-source GHG emissions would not exceed applicable MDAQMD thresholds. As such, Project construction and operational-source GHG emissions are considered less than significant.

⁶ California Air Pollution Control Officers Association, CEQA & Climate change: Evaluating and Addressing Greenhouse Gas Emissions from Projects Subject to the California Environmental Quality Act, (2008).

4 MITIGATION MEASURES

4.1 CAP MITIGATION

As discussed in 3.6-2 GHG Threshold 2: Victorville GHG Emissions Screening Table Review Measures, the Project is required to complete the GHG Screening Table and implement measures to provide for 100 points. As the final project design is not completed or approved by the City the following Mitigation Measure is required:

MM-GHG-1 GHG Emissions Screening Table Review Measures: The project shall implement the Greenhouse Gas Emissions Screening Table Review Measures (GHG Screening Table Measures) providing for a minimum 100 points per the City's Greenhouse Gas Emissions Screening Table Review form. The City shall verify incorporation of the identified GHG Screening Table Measures or equivalent replacement measures within the Project building plans and site design prior to the issuance of building permit(s) and/or site plans as applicable.

An example of how the Project could achieve a minimum of 100 GHG Emissions Screening Table points is provided in the table in Appendix D. The Project will not be required or limited to the specific measures provided the Project demonstrates a minimum of 100 points would be achieved.

5 CONCLUSION

The Project would not exceed the MDAQMD's Thresholds for GHGs as indicated in 3.6.1 GHG Threshold #1, nor would the Project conflict with an applicable plan, policy, or regulation adopted for the purposes of reducing emissions of GHGs as indicated in 3.6.2 GHG Threshold #2. Therefore, the Project's GHG Impacts are less than significant.

6 **REFERENCES**

Association of Environmental Professionals. 2021 CEQA California Environmental Quality Act Statute & Guidelines (2021)

California Air Pollution Control Officers Association (CAPCOA) . California Emissions Estimator Model User Guide Version 2020.4.0

California Air Resources Board. 2017 Scoping Plan. 2017 https://ww2.arb.ca.gov/our-work/programs/ab-32-climate-change-scoping-plan/2017-scoping-plan-documents

California Air Resources Board. 2022 Scoping Plan. 2022 https://ww2.arb.ca.gov/our-work/programs/ab-32-climate-change-scoping-plan/2022-scoping-plan-documents

California Air Resources Board. Air Quality Standards and Area Designations. http://www.arb.ca.gov/desig/desig.htm.

California Air Resources Board. Ambient Air Quality Standards (AAQS). 2016. http://www.arb.ca.gov/research/aaqs/aaqs2.pdf.

California Air Resources Board. iADAM: Air Quality Data Statistics. *California Air Resources Board.* [Online] https://www.arb.ca.gov/adam/topfour/topfour1.php

California Air Resources Board. AQ2MIS: Air Quality Data (PST) Query Tool. *California Air Resources Board.* [Online] https://www.arb.ca.gov/aqmis2/aqdselect.php?tab=specialrpt.

California Air Resources Board. California Ambient Air Quality Standards (CAAQS). 2022. http://www.arb.ca.gov/research/aaqs/caaqs/caaqs.htm.

California Air Resources Board. Western Mojave Desert Air Quality Management Plans. https://www.arb.ca.gov/planning/sip/planarea/mojavesedsip.htm.

City of Victorville. General Plan 2030. 2008.

Environmental Protection Agency. National Ambient Air Quality Standards (NAAQS). 2022 https://www.epa.gov/environmental-topics/air-topics.

Environmental Protection Agency. Air Pollution and the Clean Air Act. 2022 http://www.epa.gov/air/caa/.

Environmental Protection Agency. National Ambient Air Quality Standards (NAAQS). 1990. https://www.epa.gov/environmental-topics/air-topics.

Mojave Desert Air Quality Management District. Rule 1113 Architectural Coatings. http://mdaqmd.ca.gov/home/showdocument?id=418.

Mojave Desert Air Quality Management District Rule 403.2 Fugitive Dust Control for the Mojave Desert Planning Area. http://mdaqmd.ca.gov/home/showdocument?id=296.

Mojave Desert Air Quality Management District. District Boundaries. <u>http://mdaqmd.ca.gov/about-us/district-boundaries.</u>

Mojave Desert Air Quality Management District. Mojave Desert AQMD Attainment Status. <u>http://mdaqmd.ca.gov/home/showdocument?id=1267.</u>

Mojave Desert Air Quality Management District. California Environmental Quality Act (CEQA) and Federal Conformity Guidelines. February 2020.

https://www.mdaqmd.ca.gov/home/showpublisheddocument/8510/637406182097070000
South Coast Air Quality Management District. Final 2003 AQMP Appendix V: Modeling and Attainment Demonstrations. 2003. http://www.aqmd.gov/docs/default-source/clean-air-plns/air-quality--plans/2003-air-quality-management-plan/2003-aqmp-appendix-v.pdf.

Southern California Association of Governments, 2020 - 2045 Regional Transportation Plan/Sustainable Communities Strategy (Connect SoCal), 2020.

USEPA Overview of Greenhouse Gases: https://www.epa.gov/ghgemissions/overview-greenhouse-gases

USDA Carbon Dioxide Health Hazard Information Sheet: https://www.fsis.usda.gov/sites/default/files/media_file/2020-08/Carbon-Dioxide.pdf

APPENDIX A:

CALEEMOD EMISSIONS MODEL OUTPUTS

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

Victorville-IPG Mojave 68 Project

Mojave Desert AQMD Air District, Summer

1.0 Project Characteristics

1.1 Land Usage

Land Uses	Size	Metric	Lot Acreage	Floor Surface Area	Population
General Office Building	40.00	1000sqft	0.92	40,000.00	0
Refrigerated Warehouse-No Rail	211.46	1000sqft	4.85	211,460.00	0
Unrefrigerated Warehouse-No Rail	845.84	1000sqft	19.42	845,840.00	0
Other Asphalt Surfaces	1.71	Acre	1.71	74,487.60	0
Parking Lot	511.00	Space	4.60	204,400.00	0
Parking Lot	8.85	Acre	8.85	385,506.00	0

1.2 Other Project Characteristics

Urbanization	Urban	Wind Speed (m/s)	2.6	Precipitation Freq (Days)	30
Climate Zone	10			Operational Year	2024
Utility Company	Southern California Edisor	1			
CO2 Intensity (Ib/MWhr)	390.98	CH4 Intensity (Ib/MWhr)	0.033	N2O Intensity (Ib/MWhr)	0.004

1.3 User Entered Comments & Non-Default Data

Project Characteristics -

Land Use - Land use per site plan and narrative

Construction Phase - No demolition phase; schedule per applicant

Grading - Acres graded and import per earthwork volume ananlysis

Architectural Coating - VOC per MDAQMD Rules

Vehicle Trips - Trip rate per traffic study scope dated: 9/26/2022

Woodstoves - No wood fireplaces

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

Area Coating - VOC per MDAQMD Rule 1113

Construction Off-road Equipment Mitigation - Construction mitigation for fugitive dust

Area Mitigation - Coatings Mitigation VOC 10g/L Low VOC cleaning supplies if available

Water Mitigation - use low flow fixtures

Fleet Mix - Fleet mix per traffic study scope dated: 9/26/2022

Operational Off-Road Equipment - Forklifts / Pallet jacks - for interior movement of goods (electric) Yard dogs (T/L/B) for trailer movement modeled as CNG - no diesel.

Table Name	Column Name	Default Value	New Value
tblArchitecturalCoating	EF_Nonresidential_Exterior	250.00	50.00
tblArchitecturalCoating	EF_Nonresidential_Interior	250.00	50.00
tblArchitecturalCoating	EF_Parking	250.00	50.00
tblArchitecturalCoating	EF_Residential_Exterior	250.00	50.00
tblArchitecturalCoating	EF_Residential_Interior	250.00	50.00
tblAreaMitigation	UseLowVOCPaintNonresidentialExteriorV alue	250	10
tblAreaMitigation	UseLowVOCPaintNonresidentialInteriorV alue	250	10
tblAreaMitigation	UseLowVOCPaintParkingCheck	False	True
tblAreaMitigation	UseLowVOCPaintParkingValue	250	10
tblAreaMitigation	UseLowVOCPaintResidentialExteriorValu e	250	10
tblAreaMitigation	UseLowVOCPaintResidentialInteriorValu e	250	10
tblConstDustMitigation	CleanPavedRoadPercentReduction	0	20
tblConstDustMitigation	WaterUnpavedRoadVehicleSpeed	0	20
tblConstructionPhase	NumDays	75.00	51.00
tblConstructionPhase	NumDays	740.00	201.00
tblConstructionPhase	NumDays	55.00	86.00
tblConstructionPhase	NumDays	55.00	86.00
tblFleetMix	HHD	0.02	0.00
tblFleetMix	HHD	0.02	0.00
tblFleetMix	HHD	0.02	0.12

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

tblFleetMix	HHD	0.02	0.12
tblFleetMix	LDA	0.53	0.00
tblFleetMix	LDA	0.53	0.00
tblFleetMix	LDA	0.53	0.80
tblFleetMix	LDA	0.53	0.80
tblFleetMix	LDT1	0.06	0.00
tblFleetMix	LDT1	0.06	0.00
tblFleetMix	LDT1	0.06	0.00
tblFleetMix	LDT1	0.06	0.00
tblFleetMix	LDT2	0.17	0.00
tblFleetMix	LDT2	0.17	0.00
tblFleetMix	LDT2	0.17	0.00
tblFleetMix	LDT2	0.17	0.00
tblFleetMix	LHD1	0.03	0.00
tblFleetMix	LHD1	0.03	0.00
tblFleetMix	LHD1	0.03	0.00
tblFleetMix	LHD1	0.03	0.00
tblFleetMix	LHD2	7.6920e-003	0.00
tblFleetMix	LHD2	7.6920e-003	0.00
tblFleetMix	LHD2	7.6920e-003	0.03
tblFleetMix	LHD2	7.6920e-003	0.03
tblFleetMix	MCY	0.03	0.00
tblFleetMix	MCY	0.03	0.00
tblFleetMix	MCY	0.03	0.00
tblFleetMix	MCY	0.03	0.00
tblFleetMix	MDV	0.14	0.00
tblFleetMix	MDV	0.14	0.00
tblFleetMix	MDV	0.14	0.00
tblFleetMix	MDV	0.14	0.00

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

tblFleetMix	МН	5.4230e-003	0.00
tblFleetMix	МН	5.4230e-003	0.00
tblFleetMix	МН	5.4230e-003	0.00
tblFleetMix	МН	5.4230e-003	0.00
tblFleetMix	MHD	6.1550e-003	0.00
tblFleetMix	MHD	6.1550e-003	0.00
tblFleetMix	MHD	6.1550e-003	0.05
tblFleetMix	MHD	6.1550e-003	0.05
tblFleetMix	OBUS	4.8300e-004	0.00
tblFleetMix	OBUS	4.8300e-004	0.00
tblFleetMix	OBUS	4.8300e-004	0.00
tblFleetMix	OBUS	4.8300e-004	0.00
tblFleetMix	SBUS	9.2800e-004	0.00
tblFleetMix	SBUS	9.2800e-004	0.00
tblFleetMix	SBUS	9.2800e-004	0.00
tblFleetMix	SBUS	9.2800e-004	0.00
tblFleetMix	UBUS	1.5800e-004	0.00
tblFleetMix	UBUS	1.5800e-004	0.00
tblFleetMix	UBUS	1.5800e-004	0.00
tblFleetMix	UBUS	1.5800e-004	0.00
tblGrading	AcresOfGrading	153.00	225.00
tblOperationalOffRoadEquipment	OperDaysPerYear	260.00	365.00
tblOperationalOffRoadEquipment	OperDaysPerYear	260.00	365.00
tblOperationalOffRoadEquipment	OperFuelType	Diesel	Electrical
tblOperationalOffRoadEquipment	OperFuelType	Diesel	CNG
tblOperationalOffRoadEquipment	OperOffRoadEquipmentNumber	0.00	120.00
tblOperationalOffRoadEquipment	OperOffRoadEquipmentNumber	0.00	4.00
tblTripsAndVMT	HaulingTripNumber	0.00	576.00
tblVehicleTrips	ST_TR	1.74	1.40

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

tblVehicleTrips	SU_TR	1.74	1.40
tblVehicleTrips	WD_TR	1.74	1.40

2.0 Emissions Summary

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

2.1 Overall Construction (Maximum Daily Emission)

Unmitigated Construction

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year					lb/o	day							lb/c	lay		
2023	8.1290	61.3528	71.0459	0.2084	19.8049	2.2695	21.3390	10.1417	2.1069	11.3071	0.0000	20,891.05 43	20,891.05 43	2.7369	1.0697	21,278.25 62
2024	66.7785	35.4623	60.9600	0.1728	9.3371	1.2750	10.6121	2.5212	1.1942	3.7154	0.0000	17,410.23 90	17,410.23 90	1.5271	0.9612	17,734.84 31
Maximum	66.7785	61.3528	71.0459	0.2084	19.8049	2.2695	21.3390	10.1417	2.1069	11.3071	0.0000	20,891.05 43	20,891.05 43	2.7369	1.0697	21,278.25 62

Mitigated Construction

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year					lb/d	day							lb/c	day		
2023	8.1290	61.3528	71.0459	0.2084	11.1538	2.2695	13.4233	3.9729	2.1069	5.5203	0.0000	20,891.05 43	20,891.05 43	2.7369	1.0697	21,278.25 62
2024	66.7785	35.4623	60.9600	0.1728	7.7759	1.2750	9.0509	2.1380	1.1942	3.3322	0.0000	17,410.23 90	17,410.23 90	1.5271	0.9612	17,734.84 31
Maximum	66.7785	61.3528	71.0459	0.2084	11.1538	2.2695	13.4233	3.9729	2.1069	5.5203	0.0000	20,891.05 43	20,891.05 43	2.7369	1.0697	21,278.25 62

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	35.04	0.00	29.66	51.74	0.00	41.07	0.00	0.00	0.00	0.00	0.00	0.00

2.2 Overall Operational

Unmitigated Operational

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/d	day		
Area	30.8264	1.5000e- 003	0.1650	1.0000e- 005		5.9000e- 004	5.9000e- 004		5.9000e- 004	5.9000e- 004		0.3543	0.3543	9.2000e- 004		0.3774
Energy	0.3775	3.4317	2.8826	0.0206		0.2608	0.2608		0.2608	0.2608		4,118.022 3	4,118.022 3	0.0789	0.0755	4,142.493 7
Mobile	3.5051	16.1867	36.6317	0.1497	12.2863	0.1913	12.4776	3.3018	0.1815	3.4833		15,435.70 00	15,435.70 00	0.3000	1.2701	15,821.70 03
Offroad	0.5734	5.7695	8.9062	0.0124		0.2648	0.2648		0.2436	0.2436	0.0000	1,202.173 4	1,202.173 4	0.3888		1,211.893 6
Total	35.2824	25.3894	48.5854	0.1828	12.2863	0.7175	13.0038	3.3018	0.6865	3.9883	0.0000	20,756.25 00	20,756.25 00	0.7687	1.3456	21,176.46 50

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

2.2 Overall Operational

Mitigated Operational

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/c	day		
Area	22.2609	1.5000e- 003	0.1650	1.0000e- 005		5.9000e- 004	5.9000e- 004		5.9000e- 004	5.9000e- 004		0.3543	0.3543	9.2000e- 004		0.3774
Energy	0.3775	3.4317	2.8826	0.0206		0.2608	0.2608		0.2608	0.2608		4,118.022 3	4,118.022 3	0.0789	0.0755	4,142.493 7
Mobile	3.5051	16.1867	36.6317	0.1497	12.2863	0.1913	12.4776	3.3018	0.1815	3.4833		15,435.70 00	15,435.70 00	0.3000	1.2701	15,821.70 03
Offroad	0.5734	5.7695	8.9062	0.0124		0.2648	0.2648		0.2436	0.2436	0.0000	1,202.173 4	1,202.173 4	0.3888		1,211.893 6
Total	26.7168	25.3894	48.5854	0.1828	12.2863	0.7175	13.0038	3.3018	0.6865	3.9883	0.0000	20,756.25 00	20,756.25 00	0.7687	1.3456	21,176.46 50

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	24.28	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

3.0 Construction Detail

Construction Phase

Phase Number	Phase Name	Phase Type	Start Date	End Date	Num Days Week	Num Days	Phase Description
1	Site Preparation	Site Preparation	9/1/2023	10/12/2023	5	30	
2	Grading	Grading	10/13/2023	12/23/2023	5	51	
3	Building Construction	Building Construction	12/23/2023	9/30/2024	5	201	
4	Paving	Paving	6/1/2024	9/30/2024	5	86	

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

	5	Architectural Coating	Architectural Coating	6/1/2024	9/30/2024	5	86	
--	---	-----------------------	-----------------------	----------	-----------	---	----	--

Acres of Grading (Site Preparation Phase): 45

Acres of Grading (Grading Phase): 225

Acres of Paving: 15.16

Residential Indoor: 0; Residential Outdoor: 0; Non-Residential Indoor: 1,645,950; Non-Residential Outdoor: 548,650; Striped Parking Area: 39,864 (Architectural Coating – sqft)

OffRoad Equipment

Phase Name	Offroad Equipment Type	Amount	Usage Hours	Horse Power	Load Factor
Site Preparation	Rubber Tired Dozers	3	8.00	247	0.40
Site Preparation	Tractors/Loaders/Backhoes	4	8.00	97	0.37
Grading	Excavators	2	8.00	158	0.38
Grading	Graders	1	8.00	187	0.41
Grading	Rubber Tired Dozers	1	8.00	247	0.40
Grading	Scrapers	2	8.00	367	0.48
Grading	Tractors/Loaders/Backhoes	2	8.00	97	0.37
Building Construction	Cranes	1	7.00	231	0.29
Building Construction	Forklifts	3	8.00	89	0.20
Building Construction	Generator Sets	1	8.00	84	0.74
Building Construction	Tractors/Loaders/Backhoes	3	7.00	97	0.37
Building Construction	Welders	1	8.00	46	0.45
Paving	Pavers	2	8.00	130	0.42
Paving	Paving Equipment	2	8.00	132	0.36
Paving	Rollers	2	8.00	80	0.38
Architectural Coating	Air Compressors	1	6.00	78	0.48

Trips and VMT

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

Phase Name	Offroad Equipment Count	Worker Trip Number	Vendor Trip Number	Hauling Trip Number	Worker Trip Length	Vendor Trip Length	Hauling Trip Length	Worker Vehicle Class	Vendor Vehicle Class	Hauling Vehicle Class
Site Preparation	7	18.00	0.00	0.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT
Grading	8	20.00	0.00	576.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT
Building Construction	9	736.00	289.00	0.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT
Paving	6	15.00	0.00	0.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT
Architectural Coating	1	147.00	0.00	0.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT

3.1 Mitigation Measures Construction

Water Exposed Area

Reduce Vehicle Speed on Unpaved Roads

Clean Paved Roads

3.2 Site Preparation - 2023

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	lay							lb/d	ay		
Fugitive Dust				1	19.6570	0.0000	19.6570	10.1025	0.0000	10.1025			0.0000			0.0000
Off-Road	2.6595	27.5242	18.2443	0.0381	, , ,	1.2660	1.2660		1.1647	1.1647		3,687.308 1	3,687.308 1	1.1926		3,717.121 9
Total	2.6595	27.5242	18.2443	0.0381	19.6570	1.2660	20.9230	10.1025	1.1647	11.2672		3,687.308 1	3,687.308 1	1.1926		3,717.121 9

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

3.2 Site Preparation - 2023

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/d	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0657	0.0351	0.5089	1.3300e- 003	0.1479	7.0000e- 004	0.1486	0.0392	6.4000e- 004	0.0399		134.7499	134.7499	3.7300e- 003	3.5400e- 003	135.8980
Total	0.0657	0.0351	0.5089	1.3300e- 003	0.1479	7.0000e- 004	0.1486	0.0392	6.4000e- 004	0.0399		134.7499	134.7499	3.7300e- 003	3.5400e- 003	135.8980

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/c	lay		
Fugitive Dust					7.6662	0.0000	7.6662	3.9400	0.0000	3.9400		1 1 1	0.0000			0.0000
Off-Road	2.6595	27.5242	18.2443	0.0381		1.2660	1.2660		1.1647	1.1647	0.0000	3,687.308 1	3,687.308 1	1.1926		3,717.121 9
Total	2.6595	27.5242	18.2443	0.0381	7.6662	1.2660	8.9323	3.9400	1.1647	5.1047	0.0000	3,687.308 1	3,687.308 1	1.1926		3,717.121 9

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

3.2 Site Preparation - 2023

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/d	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0657	0.0351	0.5089	1.3300e- 003	0.1222	7.0000e- 004	0.1229	0.0329	6.4000e- 004	0.0336		134.7499	134.7499	3.7300e- 003	3.5400e- 003	135.8980
Total	0.0657	0.0351	0.5089	1.3300e- 003	0.1222	7.0000e- 004	0.1229	0.0329	6.4000e- 004	0.0336		134.7499	134.7499	3.7300e- 003	3.5400e- 003	135.8980

3.3 Grading - 2023

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/o	day							lb/d	day		
Fugitive Dust			1 1 1		10.7008	0.0000	10.7008	3.8154	0.0000	3.8154			0.0000			0.0000
Off-Road	3.3217	34.5156	28.0512	0.0621		1.4245	1.4245		1.3105	1.3105		6,011.477 7	6,011.477 7	1.9442		6,060.083 6
Total	3.3217	34.5156	28.0512	0.0621	10.7008	1.4245	12.1253	3.8154	1.3105	5.1259		6,011.477 7	6,011.477 7	1.9442		6,060.083 6

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

3.3 Grading - 2023

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/d	day		
Hauling	0.0293	1.1415	0.3432	6.2900e- 003	0.1982	0.0160	0.2141	0.0544	0.0153	0.0697		665.9433	665.9433	1.5300e- 003	0.1047	697.1728
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0730	0.0390	0.5655	1.4800e- 003	0.1643	7.8000e- 004	0.1651	0.0436	7.1000e- 004	0.0443		149.7221	149.7221	4.1500e- 003	3.9300e- 003	150.9978
Total	0.1023	1.1804	0.9087	7.7700e- 003	0.3625	0.0168	0.3792	0.0980	0.0160	0.1140		815.6654	815.6654	5.6800e- 003	0.1086	848.1706

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/c	lay		
Fugitive Dust					4.1733	0.0000	4.1733	1.4880	0.0000	1.4880			0.0000			0.0000
Off-Road	3.3217	34.5156	28.0512	0.0621		1.4245	1.4245		1.3105	1.3105	0.0000	6,011.477 7	6,011.477 7	1.9442		6,060.083 6
Total	3.3217	34.5156	28.0512	0.0621	4.1733	1.4245	5.5978	1.4880	1.3105	2.7985	0.0000	6,011.477 7	6,011.477 7	1.9442		6,060.083 6

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

3.3 Grading - 2023

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/d	day		
Hauling	0.0293	1.1415	0.3432	6.2900e- 003	0.1683	0.0160	0.1843	0.0470	0.0153	0.0623		665.9433	665.9433	1.5300e- 003	0.1047	697.1728
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0730	0.0390	0.5655	1.4800e- 003	0.1357	7.8000e- 004	0.1365	0.0366	7.1000e- 004	0.0373		149.7221	149.7221	4.1500e- 003	3.9300e- 003	150.9978
Total	0.1023	1.1804	0.9087	7.7700e- 003	0.3040	0.0168	0.3208	0.0836	0.0160	0.0996		815.6654	815.6654	5.6800e- 003	0.1086	848.1706

3.4 Building Construction - 2023

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/o	day							lb/c	lay		
Off-Road	1.5728	14.3849	16.2440	0.0269		0.6997	0.6997	1 1 1	0.6584	0.6584		2,555.209 9	2,555.209 9	0.6079		2,570.406 1
Total	1.5728	14.3849	16.2440	0.0269		0.6997	0.6997		0.6584	0.6584		2,555.209 9	2,555.209 9	0.6079		2,570.406 1

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

3.4 Building Construction - 2023

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/d	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.4456	9.8370	5.0319	0.0571	1.9602	0.1000	2.0602	0.5645	0.0956	0.6602		5,998.927 9	5,998.927 9	0.0266	0.8164	6,242.877 6
Worker	2.6866	1.4349	20.8101	0.0545	6.0461	0.0285	6.0746	1.6037	0.0263	1.6300		5,509.773 3	5,509.773 3	0.1526	0.1447	5,556.718 4
Total	3.1322	11.2719	25.8421	0.1116	8.0063	0.1285	8.1348	2.1682	0.1219	2.2901		11,508.70 13	11,508.70 13	0.1791	0.9611	11,799.59 60

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/d	day		
Off-Road	1.5728	14.3849	16.2440	0.0269		0.6997	0.6997	1 1 1	0.6584	0.6584	0.0000	2,555.209 9	2,555.209 9	0.6079		2,570.406 1
Total	1.5728	14.3849	16.2440	0.0269		0.6997	0.6997		0.6584	0.6584	0.0000	2,555.209 9	2,555.209 9	0.6079		2,570.406 1

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

3.4 Building Construction - 2023

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/d	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.4456	9.8370	5.0319	0.0571	1.6813	0.1000	1.7813	0.4961	0.0956	0.5917		5,998.927 9	5,998.927 9	0.0266	0.8164	6,242.877 6
Worker	2.6866	1.4349	20.8101	0.0545	4.9952	0.0285	5.0237	1.3458	0.0263	1.3720		5,509.773 3	5,509.773 3	0.1526	0.1447	5,556.718 4
Total	3.1322	11.2719	25.8421	0.1116	6.6764	0.1285	6.8049	1.8418	0.1219	1.9637		11,508.70 13	11,508.70 13	0.1791	0.9611	11,799.59 60

3.4 Building Construction - 2024

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/o	day							lb/c	lay		
Off-Road	1.4716	13.4438	16.1668	0.0270		0.6133	0.6133	1 1 1	0.5769	0.5769		2,555.698 9	2,555.698 9	0.6044		2,570.807 7
Total	1.4716	13.4438	16.1668	0.0270		0.6133	0.6133		0.5769	0.5769		2,555.698 9	2,555.698 9	0.6044		2,570.807 7

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

3.4 Building Construction - 2024

Unmitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/d	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.4299	9.7239	4.8519	0.0558	1.9602	0.0994	2.0596	0.5645	0.0951	0.6596		5,868.237 8	5,868.237 8	0.0253	0.7976	6,106.557 1
Worker	2.4856	1.2714	19.2650	0.0527	6.0461	0.0269	6.0730	1.6037	0.0248	1.6285		5,325.187 0	5,325.187 0	0.1374	0.1341	5,368.569 1
Total	2.9155	10.9953	24.1169	0.1085	8.0063	0.1263	8.1326	2.1682	0.1199	2.2881		11,193.42 48	11,193.42 48	0.1627	0.9317	11,475.12 61

Mitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/o	day							lb/d	day		
Off-Road	1.4716	13.4438	16.1668	0.0270		0.6133	0.6133	1 1 1	0.5769	0.5769	0.0000	2,555.698 9	2,555.698 9	0.6044		2,570.807 7
Total	1.4716	13.4438	16.1668	0.0270		0.6133	0.6133		0.5769	0.5769	0.0000	2,555.698 9	2,555.698 9	0.6044		2,570.807 7

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

3.4 Building Construction - 2024

Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/d	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.4299	9.7239	4.8519	0.0558	1.6813	0.0994	1.7807	0.4961	0.0951	0.5912		5,868.237 8	5,868.237 8	0.0253	0.7976	6,106.557 1
Worker	2.4856	1.2714	19.2650	0.0527	4.9952	0.0269	5.0221	1.3458	0.0248	1.3705		5,325.187 0	5,325.187 0	0.1374	0.1341	5,368.569 1
Total	2.9155	10.9953	24.1169	0.1085	6.6764	0.1263	6.8028	1.8418	0.1199	1.9617		11,193.42 48	11,193.42 48	0.1627	0.9317	11,475.12 61

3.5 Paving - 2024

Unmitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/o	day							lb/d	day		
Off-Road	0.9882	9.5246	14.6258	0.0228		0.4685	0.4685		0.4310	0.4310		2,207.547 2	2,207.547 2	0.7140		2,225.396 3
Paving	0.4619					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Total	1.4500	9.5246	14.6258	0.0228		0.4685	0.4685		0.4310	0.4310		2,207.547 2	2,207.547 2	0.7140		2,225.396 3

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

3.5 Paving - 2024

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/d	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0507	0.0259	0.3926	1.0700e- 003	0.1232	5.5000e- 004	0.1238	0.0327	5.0000e- 004	0.0332		108.5296	108.5296	2.8000e- 003	2.7300e- 003	109.4138
Total	0.0507	0.0259	0.3926	1.0700e- 003	0.1232	5.5000e- 004	0.1238	0.0327	5.0000e- 004	0.0332		108.5296	108.5296	2.8000e- 003	2.7300e- 003	109.4138

Mitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/c	lay		
Off-Road	0.9882	9.5246	14.6258	0.0228		0.4685	0.4685		0.4310	0.4310	0.0000	2,207.547 2	2,207.547 2	0.7140		2,225.396 3
Paving	0.4619					0.0000	0.0000		0.0000	0.0000		 - - - -	0.0000			0.0000
Total	1.4500	9.5246	14.6258	0.0228		0.4685	0.4685		0.4310	0.4310	0.0000	2,207.547 2	2,207.547 2	0.7140		2,225.396 3

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

3.5 Paving - 2024

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/d	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0507	0.0259	0.3926	1.0700e- 003	0.1018	5.5000e- 004	0.1024	0.0274	5.0000e- 004	0.0279		108.5296	108.5296	2.8000e- 003	2.7300e- 003	109.4138
Total	0.0507	0.0259	0.3926	1.0700e- 003	0.1018	5.5000e- 004	0.1024	0.0274	5.0000e- 004	0.0279		108.5296	108.5296	2.8000e- 003	2.7300e- 003	109.4138

3.6 Architectural Coating - 2024

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/d	day		
Archit. Coating	60.2136	1 1 1				0.0000	0.0000	1 1 1	0.0000	0.0000			0.0000			0.0000
Off-Road	0.1808	1.2188	1.8101	2.9700e- 003		0.0609	0.0609		0.0609	0.0609		281.4481	281.4481	0.0159		281.8443
Total	60.3944	1.2188	1.8101	2.9700e- 003		0.0609	0.0609		0.0609	0.0609		281.4481	281.4481	0.0159		281.8443

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

3.6 Architectural Coating - 2024

Unmitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/c	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.4964	0.2539	3.8478	0.0105	1.2076	5.3700e- 003	1.2129	0.3203	4.9500e- 003	0.3253		1,063.590 3	1,063.590 3	0.0274	0.0268	1,072.255 0
Total	0.4964	0.2539	3.8478	0.0105	1.2076	5.3700e- 003	1.2129	0.3203	4.9500e- 003	0.3253		1,063.590 3	1,063.590 3	0.0274	0.0268	1,072.255 0

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/c	lay		
Archit. Coating	60.2136		, , ,			0.0000	0.0000	1 1 1	0.0000	0.0000			0.0000			0.0000
Off-Road	0.1808	1.2188	1.8101	2.9700e- 003		0.0609	0.0609		0.0609	0.0609	0.0000	281.4481	281.4481	0.0159		281.8443
Total	60.3944	1.2188	1.8101	2.9700e- 003		0.0609	0.0609		0.0609	0.0609	0.0000	281.4481	281.4481	0.0159		281.8443

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

3.6 Architectural Coating - 2024

Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/d	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.4964	0.2539	3.8478	0.0105	0.9977	5.3700e- 003	1.0031	0.2688	4.9500e- 003	0.2737		1,063.590 3	1,063.590 3	0.0274	0.0268	1,072.255 0
Total	0.4964	0.2539	3.8478	0.0105	0.9977	5.3700e- 003	1.0031	0.2688	4.9500e- 003	0.2737		1,063.590 3	1,063.590 3	0.0274	0.0268	1,072.255 0

4.0 Operational Detail - Mobile

4.1 Mitigation Measures Mobile

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/c	lay		
Mitigated	3.5051	16.1867	36.6317	0.1497	12.2863	0.1913	12.4776	3.3018	0.1815	3.4833		15,435.70 00	15,435.70 00	0.3000	1.2701	15,821.70 03
Unmitigated	3.5051	16.1867	36.6317	0.1497	12.2863	0.1913	12.4776	3.3018	0.1815	3.4833		15,435.70 00	15,435.70 00	0.3000	1.2701	15,821.70 03

4.2 Trip Summary Information

	Aver	age Daily Trip Ra	te	Unmitigated	Mitigated
Land Use	Weekday	Saturday	Sunday	Annual VMT	Annual VMT
General Office Building	389.60	88.40	28.00	704,772	704,772
Other Asphalt Surfaces	0.00	0.00	0.00		
Parking Lot	0.00	0.00	0.00		
Parking Lot	0.00	0.00	0.00		
Parking Lot	0.00	0.00	0.00		
Parking Lot	0.00	0.00	0.00		
Refrigerated Warehouse-No Rail	448.30	448.30	448.30	1,308,803	1,308,803
Unrefrigerated Warehouse-No Rail	1,184.18	1,184.18	1184.18	3,457,215	3,457,215
Total	2,022.07	1,720.87	1,660.47	5,470,790	5,470,790

4.3 Trip Type Information

		Miles			Trip %			Trip Purpos	е %
Land Use	H-W or C-W	H-S or C-C	H-O or C-NW	H-W or C-W	H-S or C-C	H-O or C-NW	Primary	Diverted	Pass-by
General Office Building	9.50	7.30	7.30	33.00	48.00	19.00	77	19	4
Other Asphalt Surfaces	9.50	7.30	7.30	0.00	0.00	0.00	0	0	0
Parking Lot	9.50	7.30	7.30	0.00	0.00	0.00	0	0	0
Parking Lot	9.50	7.30	7.30	0.00	0.00	0.00	0	0	0

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

		Miles			Trip %			Trip Purpos	e %
Land Use	H-W or C-W	H-S or C-C	H-O or C-NW	H-W or C-W	H-S or C-C	H-O or C-NW	Primary	Diverted	Pass-by
Parking Lot	9.50	7.30	7.30	0.00	0.00	0.00	0	0	0
Parking Lot	9.50	7.30	7.30	0.00	0.00	0.00	0	0	0
Refrigerated Warehouse-No	9.50	7.30	7.30	59.00	0.00	41.00	92	5	3
Unrefrigerated Warehouse-No	9.50	7.30	7.30	59.00	0.00	41.00	92	5	3

4.4 Fleet Mix

Land Use	LDA	LDT1	LDT2	MDV	LHD1	LHD2	MHD	HHD	OBUS	UBUS	MCY	SBUS	MH
General Office Building	0.530590	0.056931	0.174803	0.137616	0.029294	0.007692	0.006155	0.022126	0.000483	0.000158	0.027801	0.000928	0.005423
Other Asphalt Surfaces	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
Parking Lot	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
Refrigerated Warehouse-No Rail	0.795700	0.000000	0.000000	0.000000	0.000000	0.034600	0.046400	0.123300	0.000000	0.000000	0.000000	0.000000	0.000000
Unrefrigerated Warehouse-No Rail	0.795700	0.000000	0.000000	0.000000	0.000000	0.034600	0.046400	0.123300	0.000000	0.000000	0.000000	0.000000	0.000000

5.0 Energy Detail

Historical Energy Use: N

5.1 Mitigation Measures Energy

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/c	Jay		
NaturalGas Mitigated	0.3775	3.4317	2.8826	0.0206		0.2608	0.2608		0.2608	0.2608		4,118.022 3	4,118.022 3	0.0789	0.0755	4,142.493 7
NaturalGas Unmitigated	0.3775	3.4317	2.8826	0.0206		0.2608	0.2608		0.2608	0.2608		4,118.022 3	4,118.022 3	0.0789	0.0755	4,142.493 7

5.2 Energy by Land Use - NaturalGas

<u>Unmitigated</u>

	NaturalGa s Use	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					lb/o	day							lb/c	day		
General Office Building	375.89	4.0500e- 003	0.0369	0.0310	2.2000e- 004		2.8000e- 003	2.8000e- 003		2.8000e- 003	2.8000e- 003		44.2224	44.2224	8.5000e- 004	8.1000e- 004	44.4852
Other Asphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Parking Lot	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Refrigerated Warehouse-No Rail	29969.4	0.3232	2.9382	2.4681	0.0176		0.2233	0.2233		0.2233	0.2233		3,525.810 1	3,525.810 1	0.0676	0.0646	3,546.762 2
Unrefrigerated Warehouse-No Rail	4657.91	0.0502	0.4567	0.3836	2.7400e- 003		0.0347	0.0347		0.0347	0.0347		547.9898	547.9898	0.0105	0.0101	551.2462
Total		0.3775	3.4317	2.8826	0.0206		0.2608	0.2608		0.2608	0.2608		4,118.022 3	4,118.022 3	0.0789	0.0755	4,142.493 7

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

5.2 Energy by Land Use - NaturalGas

Mitigated

	NaturalGa s Use	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					lb/o	day							lb/c	lay		
General Office Building	0.37589	4.0500e- 003	0.0369	0.0310	2.2000e- 004		2.8000e- 003	2.8000e- 003		2.8000e- 003	2.8000e- 003		44.2224	44.2224	8.5000e- 004	8.1000e- 004	44.4852
Other Asphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Parking Lot	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Refrigerated Warehouse-No Rail	29.9694	0.3232	2.9382	2.4681	0.0176		0.2233	0.2233		0.2233	0.2233		3,525.810 1	3,525.810 1	0.0676	0.0646	3,546.762 2
Unrefrigerated Warehouse-No Rail	4.65791	0.0502	0.4567	0.3836	2.7400e- 003		0.0347	0.0347		0.0347	0.0347		547.9898	547.9898	0.0105	0.0101	551.2462
Total		0.3775	3.4317	2.8826	0.0206		0.2608	0.2608		0.2608	0.2608		4,118.022 3	4,118.022 3	0.0789	0.0755	4, <mark>142.493</mark> 7

6.0 Area Detail

6.1 Mitigation Measures Area

Use Low VOC Paint - Non-Residential Interior

Use Low VOC Paint - Non-Residential Exterior

No Hearths Installed

Use Low VOC Cleaning Supplies

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	Jay		
Mitigated	22.2609	1.5000e- 003	0.1650	1.0000e- 005		5.9000e- 004	5.9000e- 004		5.9000e- 004	5.9000e- 004		0.3543	0.3543	9.2000e- 004		0.3774
Unmitigated	30.8264	1.5000e- 003	0.1650	1.0000e- 005		5.9000e- 004	5.9000e- 004		5.9000e- 004	5.9000e- 004		0.3543	0.3543	9.2000e- 004		0.3774

6.2 Area by SubCategory

Unmitigated

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory	lb/day							lb/day								
Architectural Coating	7.0937					0.0000	0.0000		0.0000	0.0000		1 1 1	0.0000			0.0000
Consumer Products	23.7176					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Landscaping	0.0152	1.5000e- 003	0.1650	1.0000e- 005		5.9000e- 004	5.9000e- 004	1	5.9000e- 004	5.9000e- 004		0.3543	0.3543	9.2000e- 004		0.3774
Total	30.8265	1.5000e- 003	0.1650	1.0000e- 005		5.9000e- 004	5.9000e- 004		5.9000e- 004	5.9000e- 004		0.3543	0.3543	9.2000e- 004		0.3774

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

6.2 Area by SubCategory

Mitigated

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory	lb/day							lb/day								
Architectural Coating	0.2838	1 1 1				0.0000	0.0000		0.0000	0.0000		1 1 1	0.0000			0.0000
Consumer Products	21.9619					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Landscaping	0.0152	1.5000e- 003	0.1650	1.0000e- 005		5.9000e- 004	5.9000e- 004		5.9000e- 004	5.9000e- 004		0.3543	0.3543	9.2000e- 004		0.3774
Total	22.2609	1.5000e- 003	0.1650	1.0000e- 005		5.9000e- 004	5.9000e- 004		5.9000e- 004	5.9000e- 004		0.3543	0.3543	9.2000e- 004		0.3774

7.0 Water Detail

7.1 Mitigation Measures Water

Install Low Flow Bathroom Faucet

Install Low Flow Toilet

Use Water Efficient Irrigation System

8.0 Waste Detail

8.1 Mitigation Measures Waste

9.0 Operational Offroad

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

Equipment Type	Number	Hours/Day	Days/Year	Horse Power	Load Factor	Fuel Type
Forklifts	120	8.00	365	89	0.20	Electrical
Tractors/Loaders/Backhoes	4	8.00	365	97	0.37	CNG

UnMitigated/Mitigated

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Equipment Type					lb/d	day							lb/c	lay		
Forklifts	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000
Tractors/Loaders/ Backhoes	0.5734	5.7695	8.9062	0.0124		0.2648	0.2648		0.2436	0.2436	0.0000	1,202.173 4	1,202.173 4	0.3888		1,211.893 6
Total	0.5734	5.7695	8.9062	0.0124		0.2648	0.2648		0.2436	0.2436	0.0000	1,202.173 4	1,202.173 4	0.3888		1,211.893 6

10.0 Stationary Equipment

Fire Pumps and Emergency Generators

Equipment Type	Number	Hours/Day	Hours/Year	Horse Power	Load Factor	Fuel Type
<u>Boilers</u>						
Equipment Type	Number	Heat Input/Day	Heat Input/Year	Boiler Rating	Fuel Type	
User Defined Equipment						
Equipment Type	Number					

11.0 Vegetation

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

Victorville-IPG Mojave 68 Project

Mojave Desert AQMD Air District, Winter

1.0 Project Characteristics

1.1 Land Usage

Land Uses	Size	Metric	Lot Acreage	Floor Surface Area	Population
General Office Building	40.00	1000sqft	0.92	40,000.00	0
Refrigerated Warehouse-No Rail	211.46	1000sqft	4.85	211,460.00	0
Unrefrigerated Warehouse-No Rail	845.84	1000sqft	19.42	845,840.00	0
Other Asphalt Surfaces	1.71	Acre	1.71	74,487.60	0
Parking Lot	511.00	Space	4.60	204,400.00	0
Parking Lot	8.85	Acre	8.85	385,506.00	0

1.2 Other Project Characteristics

Urbanization	Urban	Wind Speed (m/s)	2.6	Precipitation Freq (Days)	30
Climate Zone	10			Operational Year	2024
Utility Company	Southern Californi	a Edison			
CO2 Intensity (Ib/MWhr)	390.98	CH4 Intensity (Ib/MWhr)	0.033	N2O Intensity (Ib/MWhr)	0.004

1.3 User Entered Comments & Non-Default Data

Project Characteristics -

Land Use - Land use per site plan and narrative

Construction Phase - No demolition phase; schedule per applicant

Grading - Acres graded and import per earthwork volume ananlysis

Architectural Coating - VOC per MDAQMD Rules

Vehicle Trips - Trip rate per traffic study scope dated: 9/26/2022

Woodstoves - No wood fireplaces

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

Area Coating - VOC per MDAQMD Rule 1113

Construction Off-road Equipment Mitigation - Construction mitigation for fugitive dust

Area Mitigation - Coatings Mitigation VOC 10g/L Low VOC cleaning supplies if available

Water Mitigation - use low flow fixtures

Fleet Mix - Fleet mix per traffic study scope dated: 9/26/2022

Operational Off-Road Equipment - Forklifts / Pallet jacks - for interior movement of goods (electric) Yard dogs (T/L/B) for trailer movement modeled as CNG - no diesel.

Table Name	Column Name	Default Value	New Value
tblArchitecturalCoating	EF_Nonresidential_Exterior	250.00	50.00
tblArchitecturalCoating	EF_Nonresidential_Interior	250.00	50.00
tblArchitecturalCoating	EF_Parking	250.00	50.00
tblArchitecturalCoating	EF_Residential_Exterior	250.00	50.00
tblArchitecturalCoating	EF_Residential_Interior	250.00	50.00
tblAreaMitigation	UseLowVOCPaintNonresidentialExteriorV alue	250	10
tblAreaMitigation	UseLowVOCPaintNonresidentialInteriorV alue	250	10
tblAreaMitigation	UseLowVOCPaintParkingCheck	False	True
tblAreaMitigation	UseLowVOCPaintParkingValue	250	10
tblAreaMitigation	UseLowVOCPaintResidentialExteriorValu e	250	10
tblAreaMitigation	UseLowVOCPaintResidentialInteriorValu e	250	10
tblConstDustMitigation	CleanPavedRoadPercentReduction	0	20
tblConstDustMitigation	WaterUnpavedRoadVehicleSpeed	0	20
tblConstructionPhase	NumDays	75.00	51.00
tblConstructionPhase	NumDays	740.00	201.00
tblConstructionPhase	NumDays	55.00	86.00
tblConstructionPhase	NumDays	55.00	86.00
tblFleetMix	HHD	0.02	0.00
tblFleetMix	HHD	0.02	0.00
tblFleetMix	HHD	0.02	0.12

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

tblFleetMix	HHD	0.02	0.12
tblFleetMix	LDA	0.53	0.00
tblFleetMix	LDA	0.53	0.00
tblFleetMix	LDA	0.53	0.80
tblFleetMix	LDA	0.53	0.80
tblFleetMix	LDT1	0.06	0.00
tblFleetMix	LDT1	0.06	0.00
tblFleetMix	LDT1	0.06	0.00
tblFleetMix	LDT1	0.06	0.00
tblFleetMix	LDT2	0.17	0.00
tblFleetMix	LDT2	0.17	0.00
tblFleetMix	LDT2	0.17	0.00
tblFleetMix	LDT2	0.17	0.00
tblFleetMix	LHD1	0.03	0.00
tblFleetMix	LHD1	0.03	0.00
tblFleetMix	LHD1	0.03	0.00
tblFleetMix	LHD1	0.03	0.00
tblFleetMix	LHD2	7.6920e-003	0.00
tblFleetMix	LHD2	7.6920e-003	0.00
tblFleetMix	LHD2	7.6920e-003	0.03
tblFleetMix	LHD2	7.6920e-003	0.03
tblFleetMix	MCY	0.03	0.00
tblFleetMix	MCY	0.03	0.00
tblFleetMix	MCY	0.03	0.00
tblFleetMix	MCY	0.03	0.00
tblFleetMix	MDV	0.14	0.00
tblFleetMix	MDV	0.14	0.00
tblFleetMix	MDV	0.14	0.00
tblFleetMix	MDV	0.14	0.00
EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

tblFleetMix	МН	5.4230e-003	0.00
tblFleetMix	МН	5.4230e-003	0.00
tblFleetMix	МН	5.4230e-003	0.00
tblFleetMix	МН	5.4230e-003	0.00
tblFleetMix	MHD	6.1550e-003	0.00
tblFleetMix	MHD	6.1550e-003	0.00
tblFleetMix	MHD	6.1550e-003	0.05
tblFleetMix	MHD	6.1550e-003	0.05
tblFleetMix	OBUS	4.8300e-004	0.00
tblFleetMix	OBUS	4.8300e-004	0.00
tblFleetMix	OBUS	4.8300e-004	0.00
tblFleetMix	OBUS	4.8300e-004	0.00
tblFleetMix	SBUS	9.2800e-004	0.00
tblFleetMix	SBUS	9.2800e-004	0.00
tblFleetMix	SBUS	9.2800e-004	0.00
tblFleetMix	SBUS	9.2800e-004	0.00
tblFleetMix	UBUS	1.5800e-004	0.00
tblFleetMix	UBUS	1.5800e-004	0.00
tblFleetMix	UBUS	1.5800e-004	0.00
tblFleetMix	UBUS	1.5800e-004	0.00
tblGrading	AcresOfGrading	153.00	225.00
tblOperationalOffRoadEquipment	OperDaysPerYear	260.00	365.00
tblOperationalOffRoadEquipment	OperDaysPerYear	260.00	365.00
tblOperationalOffRoadEquipment	OperFuelType	Diesel	Electrical
tblOperationalOffRoadEquipment	OperFuelType	Diesel	CNG
tblOperationalOffRoadEquipment	OperOffRoadEquipmentNumber	0.00	120.00
tblOperationalOffRoadEquipment	OperOffRoadEquipmentNumber	0.00	4.00
tblTripsAndVMT	HaulingTripNumber	0.00	576.00
tblVehicleTrips	ST_TR	1.74	1.40

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

tblVehicleTrips	SU_TR	1.74	1.40
tblVehicleTrips	WD_TR	1.74	1.40

2.0 Emissions Summary

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

2.1 Overall Construction (Maximum Daily Emission)

Unmitigated Construction

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year					lb/d	day							lb/c	lay		
2023	7.8265	62.0953	66.9439	0.2023	19.8049	2.2698	21.3393	10.1417	2.1072	11.3071	0.0000	20,278.35 52	20,278.35 52	2.7386	1.0761	20,667.48 78
2024	66.4582	36.1307	56.4647	0.1658	9.3371	1.2753	10.6124	2.5212	1.1945	3.7157	0.0000	16,704.46 51	16,704.46 51	1.5298	0.9674	17,030.98 80
Maximum	66.4582	62.0953	66.9439	0.2023	19.8049	2.2698	21.3393	10.1417	2.1072	11.3071	0.0000	20,278.35 52	20,278.35 52	2.7386	1.0761	20,667.48 78

Mitigated Construction

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year					lb/d	day							lb/c	lay		
2023	7.8265	62.0953	66.9439	0.2023	11.1538	2.2698	13.4236	3.9729	2.1072	5.5206	0.0000	20,278.35 52	20,278.35 52	2.7386	1.0761	20,667.48 78
2024	66.4582	36.1307	56.4647	0.1658	7.7759	1.2753	9.0512	2.1380	1.1945	3.3325	0.0000	16,704.46 51	16,704.46 51	1.5298	0.9674	17,030.98 80
Maximum	66.4582	62.0953	66.9439	0.2023	11.1538	2.2698	13.4236	3.9729	2.1072	5.5206	0.0000	20,278.35 52	20,278.35 52	2.7386	1.0761	20,667.48 78

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	35.04	0.00	29.66	51.74	0.00	41.07	0.00	0.00	0.00	0.00	0.00	0.00

2.2 Overall Operational

Unmitigated Operational

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/d	day		
Area	30.8264	1.5000e- 003	0.1650	1.0000e- 005		5.9000e- 004	5.9000e- 004		5.9000e- 004	5.9000e- 004		0.3543	0.3543	9.2000e- 004		0.3774
Energy	0.3775	3.4317	2.8826	0.0206		0.2608	0.2608		0.2608	0.2608		4,118.022 3	4,118.022 3	0.0789	0.0755	4,142.493 7
Mobile	2.8706	17.1825	32.1984	0.1407	12.2863	0.1917	12.4780	3.3018	0.1819	3.4837		14,526.19 15	14,526.19 15	0.3124	1.2793	14,915.23 96
Offroad	0.5734	5.7695	8.9062	0.0124		0.2648	0.2648		0.2436	0.2436	0.0000	1,202.173 4	1,202.173 4	0.3888		1,211.893 6
Total	34.6479	26.3852	44.1522	0.1737	12.2863	0.7179	13.0042	3.3018	0.6869	3.9887	0.0000	19,846.74 15	19,846.74 15	0.7811	1.3548	20,270.00 43

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

2.2 Overall Operational

Mitigated Operational

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/o	day							lb/d	day		
Area	22.2609	1.5000e- 003	0.1650	1.0000e- 005		5.9000e- 004	5.9000e- 004		5.9000e- 004	5.9000e- 004		0.3543	0.3543	9.2000e- 004		0.3774
Energy	0.3775	3.4317	2.8826	0.0206		0.2608	0.2608		0.2608	0.2608		4,118.022 3	4,118.022 3	0.0789	0.0755	4,142.493 7
Mobile	2.8706	17.1825	32.1984	0.1407	12.2863	0.1917	12.4780	3.3018	0.1819	3.4837		14,526.19 15	14,526.19 15	0.3124	1.2793	14,915.23 96
Offroad	0.5734	5.7695	8.9062	0.0124		0.2648	0.2648		0.2436	0.2436	0.0000	1,202.173 4	1,202.173 4	0.3888		1,211.893 6
Total	26.0823	26.3852	44.1522	0.1737	12.2863	0.7179	13.0042	3.3018	0.6869	3.9887	0.0000	19,846.74 15	19,846.74 15	0.7811	1.3548	20,270.00 43

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	24.72	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

3.0 Construction Detail

Construction Phase

Phase Number	Phase Name	Phase Type	Start Date	End Date	Num Days Week	Num Days	Phase Description
1	Site Preparation	Site Preparation	9/1/2023	10/12/2023	5	30	
2	Grading	Grading	10/13/2023	12/23/2023	5	51	
3	Building Construction	Building Construction	12/23/2023	9/30/2024	5	201	
4	Paving	Paving	6/1/2024	9/30/2024	5	86	

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

	5	Architectural Coating	Architectural Coating	6/1/2024	9/30/2024	5	86	
--	---	-----------------------	-----------------------	----------	-----------	---	----	--

Acres of Grading (Site Preparation Phase): 45

Acres of Grading (Grading Phase): 225

Acres of Paving: 15.16

Residential Indoor: 0; Residential Outdoor: 0; Non-Residential Indoor: 1,645,950; Non-Residential Outdoor: 548,650; Striped Parking Area: 39,864 (Architectural Coating – sqft)

OffRoad Equipment

Phase Name	Offroad Equipment Type	Amount	Usage Hours	Horse Power	Load Factor
Site Preparation	Rubber Tired Dozers	3	8.00	247	0.40
Site Preparation	Tractors/Loaders/Backhoes	4	8.00	97	0.37
Grading	Excavators	2	8.00	158	0.38
Grading	Graders	1	8.00	187	0.41
Grading	Rubber Tired Dozers	1	8.00	247	0.40
Grading	Scrapers	2	8.00	367	0.48
Grading	Tractors/Loaders/Backhoes	2	8.00	97	0.37
Building Construction	Cranes	1	7.00	231	0.29
Building Construction	Forklifts	3	8.00	89	0.20
Building Construction	Generator Sets	1	8.00	84	0.74
Building Construction	Tractors/Loaders/Backhoes	3	7.00	97	0.37
Building Construction	Welders	1	8.00	46	0.45
Paving	Pavers	2	8.00	130	0.42
Paving	Paving Equipment	2	8.00	132	0.36
Paving	Rollers	2	8.00	80	0.38
Architectural Coating	Air Compressors	1	6.00	78	0.48

Trips and VMT

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

Phase Name	Offroad Equipment Count	Worker Trip Number	Vendor Trip Number	Hauling Trip Number	Worker Trip Length	Vendor Trip Length	Hauling Trip Length	Worker Vehicle Class	Vendor Vehicle Class	Hauling Vehicle Class
Site Preparation	7	18.00	0.00	0.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT
Grading	8	20.00	0.00	576.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT
Building Construction	9	736.00	289.00	0.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT
Paving	6	15.00	0.00	0.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT
Architectural Coating	1	147.00	0.00	0.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT

3.1 Mitigation Measures Construction

Water Exposed Area

Reduce Vehicle Speed on Unpaved Roads

Clean Paved Roads

3.2 Site Preparation - 2023

Unmitigated Construction On-Site

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/c	Jay							lb/d	lay		
Fugitive Dust	· · · · · · · · · · · · · · · · · · ·				19.6570	0.0000	19.6570	10.1025	0.0000	10.1025			0.0000			0.0000
Off-Road	2.6595	27.5242	18.2443	0.0381		1.2660	1.2660		1.1647	1.1647		3,687.308 1	3,687.308 1	1.1926		3,717.121 9
Total	2.6595	27.5242	18.2443	0.0381	19.6570	1.2660	20.9230	10.1025	1.1647	11.2672		3,687.308 1	3,687.308 1	1.1926		3,717.121 9

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

3.2 Site Preparation - 2023

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/d	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0593	0.0361	0.4069	1.1800e- 003	0.1479	7.0000e- 004	0.1486	0.0392	6.4000e- 004	0.0399		119.7291	119.7291	3.8000e- 003	3.6000e- 003	120.8967
Total	0.0593	0.0361	0.4069	1.1800e- 003	0.1479	7.0000e- 004	0.1486	0.0392	6.4000e- 004	0.0399		119.7291	119.7291	3.8000e- 003	3.6000e- 003	120.8967

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/c	lay		
Fugitive Dust			1 1 1		7.6662	0.0000	7.6662	3.9400	0.0000	3.9400			0.0000			0.0000
Off-Road	2.6595	27.5242	18.2443	0.0381		1.2660	1.2660		1.1647	1.1647	0.0000	3,687.308 1	3,687.308 1	1.1926		3,717.121 9
Total	2.6595	27.5242	18.2443	0.0381	7.6662	1.2660	8.9323	3.9400	1.1647	5.1047	0.0000	3,687.308 1	3,687.308 1	1.1926		3,717.121 9

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

3.2 Site Preparation - 2023

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/d	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0593	0.0361	0.4069	1.1800e- 003	0.1222	7.0000e- 004	0.1229	0.0329	6.4000e- 004	0.0336		119.7291	119.7291	3.8000e- 003	3.6000e- 003	120.8967
Total	0.0593	0.0361	0.4069	1.1800e- 003	0.1222	7.0000e- 004	0.1229	0.0329	6.4000e- 004	0.0336		119.7291	119.7291	3.8000e- 003	3.6000e- 003	120.8967

3.3 Grading - 2023

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/o	day							lb/d	day		
Fugitive Dust			1 1 1		10.7008	0.0000	10.7008	3.8154	0.0000	3.8154			0.0000			0.0000
Off-Road	3.3217	34.5156	28.0512	0.0621		1.4245	1.4245		1.3105	1.3105		6,011.477 7	6,011.477 7	1.9442		6,060.083 6
Total	3.3217	34.5156	28.0512	0.0621	10.7008	1.4245	12.1253	3.8154	1.3105	5.1259		6,011.477 7	6,011.477 7	1.9442		6,060.083 6

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

3.3 Grading - 2023

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/d	day		
Hauling	0.0268	1.2095	0.3512	6.3000e- 003	0.1982	0.0160	0.2142	0.0544	0.0153	0.0697		667.2716	667.2716	1.4100e- 003	0.1049	698.5606
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0658	0.0401	0.4521	1.3200e- 003	0.1643	7.8000e- 004	0.1651	0.0436	7.1000e- 004	0.0443		133.0323	133.0323	4.2300e- 003	4.0000e- 003	134.3297
Total	0.0926	1.2496	0.8033	7.6200e- 003	0.3625	0.0168	0.3792	0.0980	0.0160	0.1140		800.3039	800.3039	5.6400e- 003	0.1089	832.8903

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/o	day							lb/c	lay		
Fugitive Dust		1 1 1	1		4.1733	0.0000	4.1733	1.4880	0.0000	1.4880		1 1 1	0.0000			0.0000
Off-Road	3.3217	34.5156	28.0512	0.0621		1.4245	1.4245		1.3105	1.3105	0.0000	6,011.477 7	6,011.477 7	1.9442		6,060.083 6
Total	3.3217	34.5156	28.0512	0.0621	4.1733	1.4245	5.5978	1.4880	1.3105	2.7985	0.0000	6,011.477 7	6,011.477 7	1.9442		6,060.083 6

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

3.3 Grading - 2023

Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/d	day		
Hauling	0.0268	1.2095	0.3512	6.3000e- 003	0.1683	0.0160	0.1843	0.0470	0.0153	0.0624		667.2716	667.2716	1.4100e- 003	0.1049	698.5606
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0658	0.0401	0.4521	1.3200e- 003	0.1357	7.8000e- 004	0.1365	0.0366	7.1000e- 004	0.0373		133.0323	133.0323	4.2300e- 003	4.0000e- 003	134.3297
Total	0.0926	1.2496	0.8033	7.6200e- 003	0.3040	0.0168	0.3208	0.0836	0.0160	0.0996		800.3039	800.3039	5.6400e- 003	0.1089	832.8903

3.4 Building Construction - 2023

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/o	day							lb/c	lay		
Off-Road	1.5728	14.3849	16.2440	0.0269		0.6997	0.6997	1 1 1	0.6584	0.6584		2,555.209 9	2,555.209 9	0.6079		2,570.406 1
Total	1.5728	14.3849	16.2440	0.0269		0.6997	0.6997		0.6584	0.6584		2,555.209 9	2,555.209 9	0.6079		2,570.406 1

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

3.4 Building Construction - 2023

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/d	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.4164	10.4700	5.2068	0.0572	1.9602	0.1003	2.0605	0.5645	0.0959	0.6605		6,015.774 8	6,015.774 8	0.0253	0.8200	6,260.774 5
Worker	2.4230	1.4753	16.6386	0.0484	6.0461	0.0285	6.0746	1.6037	0.0263	1.6300		4,895.588 9	4,895.588 9	0.1556	0.1472	4,943.333 3
Total	2.8395	11.9452	21.8454	0.1057	8.0063	0.1288	8.1351	2.1682	0.1222	2.2904		10,911.36 36	10,911.36 36	0.1809	0.9672	11,204.10 78

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/o	day							lb/d	day		
Off-Road	1.5728	14.3849	16.2440	0.0269		0.6997	0.6997	1 1 1	0.6584	0.6584	0.0000	2,555.209 9	2,555.209 9	0.6079		2,570.406 1
Total	1.5728	14.3849	16.2440	0.0269		0.6997	0.6997		0.6584	0.6584	0.0000	2,555.209 9	2,555.209 9	0.6079		2,570.406 1

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

3.4 Building Construction - 2023

Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/c	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.4164	10.4700	5.2068	0.0572	1.6813	0.1003	1.7816	0.4961	0.0959	0.5920		6,015.774 8	6,015.774 8	0.0253	0.8200	6,260.774 5
Worker	2.4230	1.4753	16.6386	0.0484	4.9952	0.0285	5.0237	1.3458	0.0263	1.3720		4,895.588 9	4,895.588 9	0.1556	0.1472	4,943.333 3
Total	2.8395	11.9452	21.8454	0.1057	6.6764	0.1288	6.8053	1.8418	0.1222	1.9640		10,911.36 36	10,911.36 36	0.1809	0.9672	11,204.10 78

3.4 Building Construction - 2024

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/o	day							lb/c	lay		
Off-Road	1.4716	13.4438	16.1668	0.0270		0.6133	0.6133	1 1 1	0.5769	0.5769		2,555.698 9	2,555.698 9	0.6044		2,570.807 7
Total	1.4716	13.4438	16.1668	0.0270		0.6133	0.6133		0.5769	0.5769		2,555.698 9	2,555.698 9	0.6044		2,570.807 7

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

3.4 Building Construction - 2024

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/o	day							lb/d	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.4009	10.3492	5.0278	0.0560	1.9602	0.0997	2.0599	0.5645	0.0954	0.6599		5,884.893 8	5,884.893 8	0.0241	0.8011	6,124.223 9
Worker	2.2468	1.3068	15.4365	0.0468	6.0461	0.0269	6.0730	1.6037	0.0248	1.6285		4,733.084 2	4,733.084 2	0.1406	0.1363	4,777.210 3
Total	2.6477	11.6560	20.4643	0.1028	8.0063	0.1266	8.1329	2.1682	0.1202	2.2884		10,617.97 80	10,617.97 80	0.1647	0.9374	10,901.43 42

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/c	lay		
Off-Road	1.4716	13.4438	16.1668	0.0270		0.6133	0.6133	1 1 1	0.5769	0.5769	0.0000	2,555.698 9	2,555.698 9	0.6044		2,570.807 7
Total	1.4716	13.4438	16.1668	0.0270		0.6133	0.6133		0.5769	0.5769	0.0000	2,555.698 9	2,555.698 9	0.6044		2,570.807 7

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

3.4 Building Construction - 2024

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/d	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.4009	10.3492	5.0278	0.0560	1.6813	0.0997	1.7810	0.4961	0.0954	0.5915		5,884.893 8	5,884.893 8	0.0241	0.8011	6,124.223 9
Worker	2.2468	1.3068	15.4365	0.0468	4.9952	0.0269	5.0221	1.3458	0.0248	1.3705		4,733.084 2	4,733.084 2	0.1406	0.1363	4,777.210 3
Total	2.6477	11.6560	20.4643	0.1028	6.6764	0.1266	6.8031	1.8418	0.1202	1.9620		10,617.97 80	10,617.97 80	0.1647	0.9374	10,901.43 42

3.5 Paving - 2024

Unmitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/d	day		
Off-Road	0.9882	9.5246	14.6258	0.0228		0.4685	0.4685		0.4310	0.4310		2,207.547 2	2,207.547 2	0.7140		2,225.396 3
Paving	0.4619		1 1 1 1			0.0000	0.0000		0.0000	0.0000		 	0.0000			0.0000
Total	1.4500	9.5246	14.6258	0.0228		0.4685	0.4685		0.4310	0.4310		2,207.547 2	2,207.547 2	0.7140		2,225.396 3

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

3.5 Paving - 2024

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/d	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0458	0.0266	0.3146	9.5000e- 004	0.1232	5.5000e- 004	0.1238	0.0327	5.0000e- 004	0.0332		96.4623	96.4623	2.8700e- 003	2.7800e- 003	97.3616
Total	0.0458	0.0266	0.3146	9.5000e- 004	0.1232	5.5000e- 004	0.1238	0.0327	5.0000e- 004	0.0332		96.4623	96.4623	2.8700e- 003	2.7800e- 003	97.3616

Mitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/c	lay		
Off-Road	0.9882	9.5246	14.6258	0.0228		0.4685	0.4685		0.4310	0.4310	0.0000	2,207.547 2	2,207.547 2	0.7140		2,225.396 3
Paving	0.4619					0.0000	0.0000		0.0000	0.0000		 - - - -	0.0000			0.0000
Total	1.4500	9.5246	14.6258	0.0228		0.4685	0.4685		0.4310	0.4310	0.0000	2,207.547 2	2,207.547 2	0.7140		2,225.396 3

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

3.5 Paving - 2024

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/d	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0458	0.0266	0.3146	9.5000e- 004	0.1018	5.5000e- 004	0.1024	0.0274	5.0000e- 004	0.0279		96.4623	96.4623	2.8700e- 003	2.7800e- 003	97.3616
Total	0.0458	0.0266	0.3146	9.5000e- 004	0.1018	5.5000e- 004	0.1024	0.0274	5.0000e- 004	0.0279		96.4623	96.4623	2.8700e- 003	2.7800e- 003	97.3616

3.6 Architectural Coating - 2024

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/d	lay		
Archit. Coating	60.2136					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Off-Road	0.1808	1.2188	1.8101	2.9700e- 003		0.0609	0.0609		0.0609	0.0609		281.4481	281.4481	0.0159		281.8443
Total	60.3944	1.2188	1.8101	2.9700e- 003		0.0609	0.0609		0.0609	0.0609		281.4481	281.4481	0.0159		281.8443

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

3.6 Architectural Coating - 2024

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/d	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.4488	0.2610	3.0831	9.3500e- 003	1.2076	5.3700e- 003	1.2129	0.3203	4.9500e- 003	0.3253		945.3307	945.3307	0.0281	0.0272	954.1439
Total	0.4488	0.2610	3.0831	9.3500e- 003	1.2076	5.3700e- 003	1.2129	0.3203	4.9500e- 003	0.3253		945.3307	945.3307	0.0281	0.0272	954.1439

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/c	lay		
Archit. Coating	60.2136		, , ,			0.0000	0.0000	1 1 1	0.0000	0.0000			0.0000			0.0000
Off-Road	0.1808	1.2188	1.8101	2.9700e- 003		0.0609	0.0609		0.0609	0.0609	0.0000	281.4481	281.4481	0.0159		281.8443
Total	60.3944	1.2188	1.8101	2.9700e- 003		0.0609	0.0609		0.0609	0.0609	0.0000	281.4481	281.4481	0.0159		281.8443

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

3.6 Architectural Coating - 2024

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/d	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.4488	0.2610	3.0831	9.3500e- 003	0.9977	5.3700e- 003	1.0031	0.2688	4.9500e- 003	0.2737		945.3307	945.3307	0.0281	0.0272	954.1439
Total	0.4488	0.2610	3.0831	9.3500e- 003	0.9977	5.3700e- 003	1.0031	0.2688	4.9500e- 003	0.2737		945.3307	945.3307	0.0281	0.0272	954.1439

4.0 Operational Detail - Mobile

4.1 Mitigation Measures Mobile

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/c	lay		
Mitigated	2.8706	17.1825	32.1984	0.1407	12.2863	0.1917	12.4780	3.3018	0.1819	3.4837		14,526.19 15	14,526.19 15	0.3124	1.2793	14,915.23 96
Unmitigated	2.8706	17.1825	32.1984	0.1407	12.2863	0.1917	12.4780	3.3018	0.1819	3.4837		14,526.19 15	14,526.19 15	0.3124	1.2793	14,915.23 96

4.2 Trip Summary Information

	Aver	age Daily Trip Ra	ite	Unmitigated	Mitigated
Land Use	Weekday	Saturday	Sunday	Annual VMT	Annual VMT
General Office Building	389.60	88.40	28.00	704,772	704,772
Other Asphalt Surfaces	0.00	0.00	0.00		
Parking Lot	0.00	0.00	0.00		
Parking Lot	0.00	0.00	0.00		
Parking Lot	0.00	0.00	0.00		
Parking Lot	0.00	0.00	0.00		
Refrigerated Warehouse-No Rail	448.30	448.30	448.30	1,308,803	1,308,803
Unrefrigerated Warehouse-No Rail	1,184.18	1,184.18	1184.18	3,457,215	3,457,215
Total	2,022.07	1,720.87	1,660.47	5,470,790	5,470,790

4.3 Trip Type Information

		Miles			Trip %			Trip Purpos	е %
Land Use	H-W or C-W	H-S or C-C	H-O or C-NW	H-W or C-W	H-S or C-C	H-O or C-NW	Primary	Diverted	Pass-by
General Office Building	9.50	7.30	7.30	33.00	48.00	19.00	77	19	4
Other Asphalt Surfaces	9.50	7.30	7.30	0.00	0.00	0.00	0	0	0
Parking Lot	9.50	7.30	7.30	0.00	0.00	0.00	0	0	0
Parking Lot	9.50	7.30	7.30	0.00	0.00	0.00	0	0	0

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

		Miles			Trip %			Trip Purpos	e %
Land Use	H-W or C-W	H-S or C-C	H-O or C-NW	H-W or C-W	H-S or C-C	H-O or C-NW	Primary	Diverted	Pass-by
Parking Lot	9.50	7.30	7.30	0.00	0.00	0.00	0	0	0
Parking Lot	9.50	7.30	7.30	0.00	0.00	0.00	0	0	0
Refrigerated Warehouse-No	9.50	7.30	7.30	59.00	0.00	41.00	92	5	3
Unrefrigerated Warehouse-No	9.50	7.30	7.30	59.00	0.00	41.00	92	5	3

4.4 Fleet Mix

Land Use	LDA	LDT1	LDT2	MDV	LHD1	LHD2	MHD	HHD	OBUS	UBUS	MCY	SBUS	MH
General Office Building	0.530590	0.056931	0.174803	0.137616	0.029294	0.007692	0.006155	0.022126	0.000483	0.000158	0.027801	0.000928	0.005423
Other Asphalt Surfaces	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
Parking Lot	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
Refrigerated Warehouse-No Rail	0.795700	0.000000	0.000000	0.000000	0.000000	0.034600	0.046400	0.123300	0.000000	0.000000	0.000000	0.000000	0.000000
Unrefrigerated Warehouse-No Rail	0.795700	0.000000	0.000000	0.000000	0.000000	0.034600	0.046400	0.123300	0.000000	0.000000	0.000000	0.000000	0.000000

5.0 Energy Detail

Historical Energy Use: N

5.1 Mitigation Measures Energy

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/d	day		
NaturalGas Mitigated	0.3775	3.4317	2.8826	0.0206		0.2608	0.2608		0.2608	0.2608		4,118.022 3	4,118.022 3	0.0789	0.0755	4,142.493 7
NaturalGas Unmitigated	0.3775	3.4317	2.8826	0.0206	 - - -	0.2608	0.2608		0.2608	0.2608		4,118.022 3	4,118.022 3	0.0789	0.0755	4,142.493 7

5.2 Energy by Land Use - NaturalGas

<u>Unmitigated</u>

	NaturalGa s Use	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					lb/o	day							lb/c	lay		
General Office Building	375.89	4.0500e- 003	0.0369	0.0310	2.2000e- 004		2.8000e- 003	2.8000e- 003		2.8000e- 003	2.8000e- 003		44.2224	44.2224	8.5000e- 004	8.1000e- 004	44.4852
Other Asphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Parking Lot	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Refrigerated Warehouse-No Rail	29969.4	0.3232	2.9382	2.4681	0.0176		0.2233	0.2233		0.2233	0.2233		3,525.810 1	3,525.810 1	0.0676	0.0646	3,546.762 2
Unrefrigerated Warehouse-No Rail	4657.91	0.0502	0.4567	0.3836	2.7400e- 003		0.0347	0.0347		0.0347	0.0347		547.9898	547.9898	0.0105	0.0101	551.2462
Total		0.3775	3.4317	2.8826	0.0206		0.2608	0.2608		0.2608	0.2608		4,118.022 3	4,118.022 3	0.0789	0.0755	4,142.493 7

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

5.2 Energy by Land Use - NaturalGas

Mitigated

	NaturalGa s Use	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					lb/e	day							lb/c	lay		
General Office Building	0.37589	4.0500e- 003	0.0369	0.0310	2.2000e- 004		2.8000e- 003	2.8000e- 003		2.8000e- 003	2.8000e- 003		44.2224	44.2224	8.5000e- 004	8.1000e- 004	44.4852
Other Asphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Parking Lot	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Refrigerated Warehouse-No Rail	29.9694	0.3232	2.9382	2.4681	0.0176		0.2233	0.2233		0.2233	0.2233		3,525.810 1	3,525.810 1	0.0676	0.0646	3,546.762 2
Unrefrigerated Warehouse-No Rail	4.65791	0.0502	0.4567	0.3836	2.7400e- 003		0.0347	0.0347		0.0347	0.0347		547.9898	547.9898	0.0105	0.0101	551.2462
Total		0.3775	3.4317	2.8826	0.0206		0.2608	0.2608		0.2608	0.2608		4,118.022 3	4,118.022 3	0.0789	0.0755	4,142.493 7

6.0 Area Detail

6.1 Mitigation Measures Area

Use Low VOC Paint - Non-Residential Interior

Use Low VOC Paint - Non-Residential Exterior

No Hearths Installed

Use Low VOC Cleaning Supplies

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/d	day		
Mitigated	22.2609	1.5000e- 003	0.1650	1.0000e- 005		5.9000e- 004	5.9000e- 004		5.9000e- 004	5.9000e- 004		0.3543	0.3543	9.2000e- 004		0.3774
Unmitigated	30.8264	1.5000e- 003	0.1650	1.0000e- 005		5.9000e- 004	5.9000e- 004	 - - -	5.9000e- 004	5.9000e- 004		0.3543	0.3543	9.2000e- 004		0.3774

6.2 Area by SubCategory

Unmitigated

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					lb/c	lay							lb/c	lay		
Architectural Coating	7.0937					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Consumer Products	23.7176					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Landscaping	0.0152	1.5000e- 003	0.1650	1.0000e- 005		5.9000e- 004	5.9000e- 004		5.9000e- 004	5.9000e- 004		0.3543	0.3543	9.2000e- 004		0.3774
Total	30.8265	1.5000e- 003	0.1650	1.0000e- 005		5.9000e- 004	5.9000e- 004		5.9000e- 004	5.9000e- 004		0.3543	0.3543	9.2000e- 004		0.3774

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

6.2 Area by SubCategory

Mitigated

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					lb/e	day							lb/e	day		
Architectural Coating	0.2838	1 1 1				0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Consumer Products	21.9619					0.0000	0.0000		0.0000	0.0000		 - - -	0.0000			0.0000
Landscaping	0.0152	1.5000e- 003	0.1650	1.0000e- 005		5.9000e- 004	5.9000e- 004	1 1 1 1 1	5.9000e- 004	5.9000e- 004		0.3543	0.3543	9.2000e- 004		0.3774
Total	22.2609	1.5000e- 003	0.1650	1.0000e- 005		5.9000e- 004	5.9000e- 004		5.9000e- 004	5.9000e- 004		0.3543	0.3543	9.2000e- 004		0.3774

7.0 Water Detail

7.1 Mitigation Measures Water

Install Low Flow Bathroom Faucet

Install Low Flow Toilet

Use Water Efficient Irrigation System

8.0 Waste Detail

8.1 Mitigation Measures Waste

9.0 Operational Offroad

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

Equipment Type	Number	Hours/Day	Days/Year	Horse Power	Load Factor	Fuel Type
Forklifts	120	8.00	365	89	0.20	Electrical
Tractors/Loaders/Backhoes	4	8.00	365	97	0.37	CNG

UnMitigated/Mitigated

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Equipment Type					lb/d	day							lb/c	lay		
Forklifts	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000
Tractors/Loaders/ Backhoes	0.5734	5.7695	8.9062	0.0124		0.2648	0.2648		0.2436	0.2436	0.0000	1,202.173 4	1,202.173 4	0.3888		1,211.893 6
Total	0.5734	5.7695	8.9062	0.0124		0.2648	0.2648		0.2436	0.2436	0.0000	1,202.173 4	1,202.173 4	0.3888		1,211.893 6

10.0 Stationary Equipment

Fire Pumps and Emergency Generators

Equipment Type	Number	Hours/Day	Hours/Year	Horse Power	Load Factor	Fuel Type
<u>Boilers</u>						
Equipment Type	Number	Heat Input/Day	Heat Input/Year	Boiler Rating	Fuel Type	
User Defined Equipment						
Equipment Type	Number					

11.0 Vegetation

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

Victorville-IPG Mojave 68 Project

Mojave Desert AQMD Air District, Annual

1.0 Project Characteristics

1.1 Land Usage

Land Uses	Size	Metric	Lot Acreage	Floor Surface Area	Population
General Office Building	40.00	1000sqft	0.92	40,000.00	0
Refrigerated Warehouse-No Rail	211.46	1000sqft	4.85	211,460.00	0
Unrefrigerated Warehouse-No Rail	845.84	1000sqft	19.42	845,840.00	0
Other Asphalt Surfaces	1.71	Acre	1.71	74,487.60	0
Parking Lot	511.00	Space	4.60	204,400.00	0
Parking Lot	8.85	Acre	8.85	385,506.00	0

1.2 Other Project Characteristics

Urbanization	Urban	Wind Speed (m/s)	2.6	Precipitation Freq (Days)	30
Climate Zone	10			Operational Year	2024
Utility Company	Southern California	Edison			
CO2 Intensity (Ib/MWhr)	390.98	CH4 Intensity (Ib/MWhr)	0.033	N2O Intensity (Ib/MWhr)	0.004

1.3 User Entered Comments & Non-Default Data

Project Characteristics -

Land Use - Land use per site plan and narrative

Construction Phase - No demolition phase; schedule per applicant

Grading - Acres graded and import per earthwork volume ananlysis

Architectural Coating - VOC per MDAQMD Rules

Vehicle Trips - Trip rate per traffic study scope dated: 9/26/2022

Woodstoves - No wood fireplaces

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

Area Coating - VOC per MDAQMD Rule 1113

Construction Off-road Equipment Mitigation - Construction mitigation for fugitive dust

Area Mitigation - Coatings Mitigation VOC 10g/L Low VOC cleaning supplies if available

Water Mitigation - use low flow fixtures

Operational Off-Road Equipment - Forklifts / Pallet jacks - for interior movement of goods (electric) Yard dogs (T/L/B) for trailer movement modeled as CNG - no diesel.

Fleet Mix - Fleet mix per traffic study scope dated: 9/26/2022

Table Name	Column Name	Default Value	New Value
tblArchitecturalCoating	EF_Nonresidential_Exterior	250.00	50.00
tblArchitecturalCoating	EF_Nonresidential_Interior	250.00	50.00
tblArchitecturalCoating	EF_Parking	250.00	50.00
tblArchitecturalCoating	EF_Residential_Exterior	250.00	50.00
tblArchitecturalCoating	EF_Residential_Interior	250.00	50.00
tblAreaMitigation	UseLowVOCPaintNonresidentialExteriorV alue	250	10
tblAreaMitigation	UseLowVOCPaintNonresidentialInteriorV alue	250	10
tblAreaMitigation	UseLowVOCPaintParkingCheck	False	True
tblAreaMitigation	UseLowVOCPaintParkingValue	250	10
tblAreaMitigation	UseLowVOCPaintResidentialExteriorValu e	250	10
tblAreaMitigation	UseLowVOCPaintResidentialInteriorValu e	250	10
tblConstDustMitigation	CleanPavedRoadPercentReduction	0	20
tblConstDustMitigation	WaterUnpavedRoadVehicleSpeed	0	20
tblConstructionPhase	NumDays	55.00	86.00
tblConstructionPhase	NumDays	740.00	201.00
tblConstructionPhase	NumDays	75.00	51.00
tblConstructionPhase	NumDays	55.00	86.00
tblFleetMix	HHD	0.02	0.00
tblFleetMix	HHD	0.02	0.00
tblFleetMix	HHD	0.02	0.12

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

tblFleetMix	HHD	0.02	0.12
tblFleetMix	LDA	0.53	0.00
tblFleetMix	LDA	0.53	0.00
tblFleetMix	LDA	0.53	0.80
tblFleetMix	LDA	0.53	0.80
tblFleetMix	LDT1	0.06	0.00
tblFleetMix	LDT1	0.06	0.00
tblFleetMix	LDT1	0.06	0.00
tblFleetMix	LDT1	0.06	0.00
tblFleetMix	LDT2	0.17	0.00
tblFleetMix	LDT2	0.17	0.00
tblFleetMix	LDT2	0.17	0.00
tblFleetMix	LDT2	0.17	0.00
tblFleetMix	LHD1	0.03	0.00
tblFleetMix	LHD1	0.03	0.00
tblFleetMix	LHD1	0.03	0.00
tblFleetMix	LHD1	0.03	0.00
tblFleetMix	LHD2	7.6920e-003	0.00
tblFleetMix	LHD2	7.6920e-003	0.00
tblFleetMix	LHD2	7.6920e-003	0.03
tblFleetMix	LHD2	7.6920e-003	0.03
tblFleetMix	MCY	0.03	0.00
tblFleetMix	МСҮ	0.03	0.00
tblFleetMix	МСҮ	0.03	0.00
tblFleetMix	MCY	0.03	0.00
tblFleetMix	MDV	0.14	0.00
tblFleetMix	MDV	0.14	0.00
tblFleetMix	MDV	0.14	0.00
tblFleetMix	MDV	0.14	0.00

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

		E 4000 000	0.00
tblFleetMix	МН	5.4230e-003	0.00
tblFleetMix	МН	5.4230e-003	0.00
tblFleetMix	МН	5.4230e-003	0.00
tblFleetMix	МН	5.4230e-003	0.00
tblFleetMix	MHD	6.1550e-003	0.00
tblFleetMix	MHD	6.1550e-003	0.00
tblFleetMix	MHD	6.1550e-003	0.05
tblFleetMix	MHD	6.1550e-003	0.05
tblFleetMix	OBUS	4.8300e-004	0.00
tblFleetMix	OBUS	4.8300e-004	0.00
tblFleetMix	OBUS	4.8300e-004	0.00
tblFleetMix	OBUS	4.8300e-004	0.00
tblFleetMix	SBUS	9.2800e-004	0.00
tblFleetMix	SBUS	9.2800e-004	0.00
tblFleetMix	SBUS	9.2800e-004	0.00
tblFleetMix	SBUS	9.2800e-004	0.00
tblFleetMix	UBUS	1.5800e-004	0.00
tblFleetMix	UBUS	1.5800e-004	0.00
tblFleetMix	UBUS	1.5800e-004	0.00
tblFleetMix	UBUS	1.5800e-004	0.00
tblGrading	AcresOfGrading	153.00	225.00
tblOperationalOffRoadEquipment	OperDaysPerYear	260.00	365.00
tblOperationalOffRoadEquipment	OperDaysPerYear	260.00	365.00
tblOperationalOffRoadEquipment	OperFuelType	Diesel	Electrical
tblOperationalOffRoadEquipment	OperFuelType	Diesel	CNG
tblOperationalOffRoadEquipment	OperOffRoadEquipmentNumber	0.00	120.00
tblOperationalOffRoadEquipment	OperOffRoadEquipmentNumber	0.00	4.00
tblTripsAndVMT	HaulingTripNumber	0.00	576.00
tblVehicleTrips	ST_TR	1.74	1.40

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

tblVehicleTrips	SU_TR	1.74	1.40
tblVehicleTrips	WD_TR	1.74	1.40

2.0 Emissions Summary

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

2.1 Overall Construction

Unmitigated Construction

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year					ton	s/yr							МТ	/yr		
2023	0.1383	1.3914	1.1147	2.7000e- 003	0.5987	0.0578	0.6565	0.2572	0.0533	0.3105	0.0000	240.3310	240.3310	0.0632	4.7800e- 003	243.3341
2024	3.0682	2.9347	4.5536	0.0144	0.8274	0.0955	0.9229	0.2241	0.0897	0.3138	0.0000	1,321.035 6	1,321.035 6	0.0985	0.0850	1,348.816 3
Maximum	3.0682	2.9347	4.5536	0.0144	0.8274	0.0955	0.9229	0.2572	0.0897	0.3138	0.0000	1,321.035 6	1,321.035 6	0.0985	0.0850	1,348.816 3

Mitigated Construction

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year					ton	s/yr							МТ	/yr		
2023	0.1383	1.3914	1.1147	2.7000e- 003	0.2473	0.0578	0.3051	0.1042	0.0533	0.1574	0.0000	240.3308	240.3308	0.0632	4.7800e- 003	243.3338
2024	3.0682	2.9347	4.5536	0.0144	0.6900	0.0955	0.7856	0.1904	0.0897	0.2801	0.0000	1,321.035 2	1,321.035 2	0.0985	0.0850	1,348.815 9
Maximum	3.0682	2.9347	4.5536	0.0144	0.6900	0.0955	0.7856	0.1904	0.0897	0.2801	0.0000	1,321.035 2	1,321.035 2	0.0985	0.0850	1,348.815 9

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	34.28	0.00	30.95	38.80	0.00	29.91	0.00	0.00	0.00	0.00	0.00	0.00

Quarter	Start Date	End Date	Maximum Unmitigated ROG + NOX (tons/quarter)	Maximum Mitigated ROG + NOX (tons/quarter)
1	9-1-2023	11-30-2023	1.1399	1.1399
2	12-1-2023	2-29-2024	1.0468	1.0468
3	3-1-2024	5-31-2024	0.9515	0.9515
4	6-1-2024	8-31-2024	3.3593	3.3593
5	9-1-2024	9-30-2024	1.0954	1.0954
		Highest	3.3593	3.3593

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

2.2 Overall Operational

Unmitigated Operational

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	tons/yr											МТ	/yr			
Area	5.6244	1.3000e- 004	0.0149	0.0000		5.0000e- 005	5.0000e- 005		5.0000e- 005	5.0000e- 005	0.0000	0.0289	0.0289	8.0000e- 005	0.0000	0.0308
Energy	0.0689	0.6263	0.5261	3.7600e- 003		0.0476	0.0476		0.0476	0.0476	0.0000	2,625.666 2	2,625.666 2	0.1771	0.0324	2,639.745 8
Mobile	0.4780	3.0537	5.7406	0.0251	2.1120	0.0341	2.1461	0.5686	0.0323	0.6010	0.0000	2,351.503 9	2,351.503 9	0.0481	0.2077	2,414.590 5
Offroad	0.1051	1.0572	1.6320	2.2800e- 003		0.0485	0.0485		0.0446	0.0446	0.0000	199.8432	199.8432	0.0646	0.0000	201.4591
Waste	n					0.0000	0.0000		0.0000	0.0000	209.2959	0.0000	209.2959	12.3690	0.0000	518.5216
Water						0.0000	0.0000		0.0000	0.0000	79.8242	589.6072	669.4314	8.2485	0.1996	935.1306
Total	6.2763	4.7373	7.9135	0.0312	2.1120	0.1302	2.2423	0.5686	0.1246	0.6933	289.1201	5,766.649 4	6,055.769 5	20.9074	0.4397	6,709.478 5

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

2.2 Overall Operational

Mitigated Operational

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	tons/yr											МТ	/yr			
Area	4.0612	1.3000e- 004	0.0149	0.0000		5.0000e- 005	5.0000e- 005		5.0000e- 005	5.0000e- 005	0.0000	0.0289	0.0289	8.0000e- 005	0.0000	0.0308
Energy	0.0689	0.6263	0.5261	3.7600e- 003		0.0476	0.0476		0.0476	0.0476	0.0000	2,625.666 2	2,625.666 2	0.1771	0.0324	2,639.745 8
Mobile	0.4780	3.0537	5.7406	0.0251	2.1120	0.0341	2.1461	0.5686	0.0323	0.6010	0.0000	2,351.503 9	2,351.503 9	0.0481	0.2077	2,414.590 5
Offroad	0.1051	1.0572	1.6320	2.2800e- 003		0.0485	0.0485		0.0446	0.0446	0.0000	199.8432	199.8432	0.0646	0.0000	201.4591
Waste	n					0.0000	0.0000		0.0000	0.0000	209.2959	0.0000	209.2959	12.3690	0.0000	518.5216
Water						0.0000	0.0000		0.0000	0.0000	69.9580	517.2692	587.2271	7.2290	0.1750	820.0887
Total	4.7131	4.7373	7.9135	0.0312	2.1120	0.1302	2.2423	0.5686	0.1246	0.6933	279.2538	5,694.311 4	5,973.565 2	19.8879	0.4150	6,594.436 5

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	24.91	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	3.41	1.25	1.36	4.88	5.61	1.71

3.0 Construction Detail

Construction Phase

Phase Number	Phase Name	Phase Type	Start Date	End Date	Num Days Week	Num Days	Phase Description
1	Site Preparation	Site Preparation	9/1/2023	10/12/2023	5	30	
2	Grading	Grading	10/13/2023	12/23/2023	5	51	
EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

3	Building Construction	Building Construction	12/23/2023	9/30/2024	5	201	
4	Paving	Paving	6/1/2024	9/30/2024	5	86	
5	Architectural Coating	Architectural Coating	6/1/2024	9/30/2024	5	86	

Acres of Grading (Site Preparation Phase): 45

Acres of Grading (Grading Phase): 225

Acres of Paving: 15.16

Residential Indoor: 0; Residential Outdoor: 0; Non-Residential Indoor: 1,645,950; Non-Residential Outdoor: 548,650; Striped Parking Area: 39,864 (Architectural Coating – sqft)

OffRoad Equipment

Phase Name	Offroad Equipment Type	Amount	Usage Hours	Horse Power	Load Factor
Site Preparation	Rubber Tired Dozers	3	8.00	247	0.40
Site Preparation	Tractors/Loaders/Backhoes	4	8.00	97	0.37
Grading	Excavators	2	8.00	158	0.38
Grading	Graders	1	8.00	187	0.41
Grading	Rubber Tired Dozers	1	8.00	247	0.40
Grading	Scrapers	2	8.00	367	0.48
Grading	Tractors/Loaders/Backhoes	2	8.00	97	0.37
Building Construction	Cranes	1	7.00	231	0.29
Building Construction	Forklifts	3	8.00	89	0.20
Building Construction	Generator Sets	1	8.00	84	0.74
Building Construction	Tractors/Loaders/Backhoes	3	7.00	97	0.37
Building Construction	Welders	1	8.00	46	0.45
Paving	Pavers	2	8.00	130	0.42
Paving	Paving Equipment	2	8.00	132	0.36
Paving	Rollers	2	8.00	80	0.38
Architectural Coating	Air Compressors	1	6.00	78	0.48

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

Trips and VMT

Phase Name	Offroad Equipment Count	Worker Trip Number	Vendor Trip Number	Hauling Trip Number	Worker Trip Length	Vendor Trip Length	Hauling Trip Length	Worker Vehicle Class	Vendor Vehicle Class	Hauling Vehicle Class
Site Preparation	7	18.00	0.00	0.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT
Grading	8	20.00	0.00	576.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT
Building Construction	9	736.00	289.00	0.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT
Paving	6	15.00	0.00	0.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT
Architectural Coating	1	147.00	0.00	0.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT

3.1 Mitigation Measures Construction

Water Exposed Area

Reduce Vehicle Speed on Unpaved Roads

Clean Paved Roads

3.2 Site Preparation - 2023

Unmitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	'/yr		
Fugitive Dust		1 1 1			0.2949	0.0000	0.2949	0.1515	0.0000	0.1515	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	0.0399	0.4129	0.2737	5.7000e- 004		0.0190	0.0190		0.0175	0.0175	0.0000	50.1760	50.1760	0.0162	0.0000	50.5817
Total	0.0399	0.4129	0.2737	5.7000e- 004	0.2949	0.0190	0.3139	0.1515	0.0175	0.1690	0.0000	50.1760	50.1760	0.0162	0.0000	50.5817

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

3.2 Site Preparation - 2023

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	8.3000e- 004	5.8000e- 004	6.5400e- 003	2.0000e- 005	2.1800e- 003	1.0000e- 005	2.1900e- 003	5.8000e- 004	1.0000e- 005	5.9000e- 004	0.0000	1.6752	1.6752	5.0000e- 005	5.0000e- 005	1.6917
Total	8.3000e- 004	5.8000e- 004	6.5400e- 003	2.0000e- 005	2.1800e- 003	1.0000e- 005	2.1900e- 003	5.8000e- 004	1.0000e- 005	5.9000e- 004	0.0000	1.6752	1.6752	5.0000e- 005	5.0000e- 005	1.6917

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Fugitive Dust					0.1150	0.0000	0.1150	0.0591	0.0000	0.0591	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	0.0399	0.4129	0.2737	5.7000e- 004		0.0190	0.0190		0.0175	0.0175	0.0000	50.1760	50.1760	0.0162	0.0000	50.5817
Total	0.0399	0.4129	0.2737	5.7000e- 004	0.1150	0.0190	0.1340	0.0591	0.0175	0.0766	0.0000	50.1760	50.1760	0.0162	0.0000	50.5817

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

3.2 Site Preparation - 2023

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	7/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	8.3000e- 004	5.8000e- 004	6.5400e- 003	2.0000e- 005	1.8000e- 003	1.0000e- 005	1.8100e- 003	4.9000e- 004	1.0000e- 005	5.0000e- 004	0.0000	1.6752	1.6752	5.0000e- 005	5.0000e- 005	1.6917
Total	8.3000e- 004	5.8000e- 004	6.5400e- 003	2.0000e- 005	1.8000e- 003	1.0000e- 005	1.8100e- 003	4.9000e- 004	1.0000e- 005	5.0000e- 004	0.0000	1.6752	1.6752	5.0000e- 005	5.0000e- 005	1.6917

3.3 Grading - 2023

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	'/yr		
Fugitive Dust		1 1 1			0.2729	0.0000	0.2729	0.0973	0.0000	0.0973	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	0.0847	0.8802	0.7153	1.5800e- 003		0.0363	0.0363		0.0334	0.0334	0.0000	139.0648	139.0648	0.0450	0.0000	140.1892
Total	0.0847	0.8802	0.7153	1.5800e- 003	0.2729	0.0363	0.3092	0.0973	0.0334	0.1307	0.0000	139.0648	139.0648	0.0450	0.0000	140.1892

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

3.3 Grading - 2023

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	ſ/yr		
Hauling	7.2000e- 004	0.0308	8.8300e- 003	1.6000e- 004	4.9700e- 003	4.1000e- 004	5.3800e- 003	1.3700e- 003	3.9000e- 004	1.7600e- 003	0.0000	15.4183	15.4183	3.0000e- 005	2.4200e- 003	16.1413
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	1.5600e- 003	1.0900e- 003	0.0124	3.0000e- 005	4.1100e- 003	2.0000e- 005	4.1300e- 003	1.0900e- 003	2.0000e- 005	1.1100e- 003	0.0000	3.1642	3.1642	1.0000e- 004	1.0000e- 004	3.1955
Total	2.2800e- 003	0.0319	0.0212	1.9000e- 004	9.0800e- 003	4.3000e- 004	9.5100e- 003	2.4600e- 003	4.1000e- 004	2.8700e- 003	0.0000	18.5825	18.5825	1.3000e- 004	2.5200e- 003	19.3368

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	'/yr		
Fugitive Dust					0.1064	0.0000	0.1064	0.0379	0.0000	0.0379	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	0.0847	0.8802	0.7153	1.5800e- 003		0.0363	0.0363		0.0334	0.0334	0.0000	139.0646	139.0646	0.0450	0.0000	140.1890
Total	0.0847	0.8802	0.7153	1.5800e- 003	0.1064	0.0363	0.1427	0.0379	0.0334	0.0714	0.0000	139.0646	139.0646	0.0450	0.0000	140.1890

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

3.3 Grading - 2023

Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		
Hauling	7.2000e- 004	0.0308	8.8300e- 003	1.6000e- 004	4.2300e- 003	4.1000e- 004	4.6400e- 003	1.1800e- 003	3.9000e- 004	1.5700e- 003	0.0000	15.4183	15.4183	3.0000e- 005	2.4200e- 003	16.1413
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	1.5600e- 003	1.0900e- 003	0.0124	3.0000e- 005	3.4000e- 003	2.0000e- 005	3.4200e- 003	9.2000e- 004	2.0000e- 005	9.4000e- 004	0.0000	3.1642	3.1642	1.0000e- 004	1.0000e- 004	3.1955
Total	2.2800e- 003	0.0319	0.0212	1.9000e- 004	7.6300e- 003	4.3000e- 004	8.0600e- 003	2.1000e- 003	4.1000e- 004	2.5100e- 003	0.0000	18.5825	18.5825	1.3000e- 004	2.5200e- 003	19.3368

3.4 Building Construction - 2023

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		
Off-Road	3.9300e- 003	0.0360	0.0406	7.0000e- 005		1.7500e- 003	1.7500e- 003		1.6500e- 003	1.6500e- 003	0.0000	5.7951	5.7951	1.3800e- 003	0.0000	5.8296
Total	3.9300e- 003	0.0360	0.0406	7.0000e- 005		1.7500e- 003	1.7500e- 003		1.6500e- 003	1.6500e- 003	0.0000	5.7951	5.7951	1.3800e- 003	0.0000	5.8296

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

3.4 Building Construction - 2023

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	ſ/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	1.0700e- 003	0.0260	0.0128	1.4000e- 004	4.8300e- 003	2.5000e- 004	5.0800e- 003	1.3900e- 003	2.4000e- 004	1.6300e- 003	0.0000	13.6215	13.6215	6.0000e- 005	1.8600e- 003	14.1763
Worker	5.6300e- 003	3.9300e- 003	0.0446	1.2000e- 004	0.0149	7.0000e- 005	0.0149	3.9400e- 003	7.0000e- 005	4.0100e- 003	0.0000	11.4159	11.4159	3.6000e- 004	3.5000e- 004	11.5287
Total	6.7000e- 003	0.0299	0.0574	2.6000e- 004	0.0197	3.2000e- 004	0.0200	5.3300e- 003	3.1000e- 004	5.6400e- 003	0.0000	25.0374	25.0374	4.2000e- 004	2.2100e- 003	25.7051

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Off-Road	3.9300e- 003	0.0360	0.0406	7.0000e- 005		1.7500e- 003	1.7500e- 003	- 	1.6500e- 003	1.6500e- 003	0.0000	5.7951	5.7951	1.3800e- 003	0.0000	5.8296
Total	3.9300e- 003	0.0360	0.0406	7.0000e- 005		1.7500e- 003	1.7500e- 003		1.6500e- 003	1.6500e- 003	0.0000	5.7951	5.7951	1.3800e- 003	0.0000	5.8296

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

3.4 Building Construction - 2023

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	ſ/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	1.0700e- 003	0.0260	0.0128	1.4000e- 004	4.1500e- 003	2.5000e- 004	4.4000e- 003	1.2300e- 003	2.4000e- 004	1.4700e- 003	0.0000	13.6215	13.6215	6.0000e- 005	1.8600e- 003	14.1763
Worker	5.6300e- 003	3.9300e- 003	0.0446	1.2000e- 004	0.0123	7.0000e- 005	0.0123	3.3100e- 003	7.0000e- 005	3.3800e- 003	0.0000	11.4159	11.4159	3.6000e- 004	3.5000e- 004	11.5287
Total	6.7000e- 003	0.0299	0.0574	2.6000e- 004	0.0164	3.2000e- 004	0.0167	4.5400e- 003	3.1000e- 004	4.8500e- 003	0.0000	25.0374	25.0374	4.2000e- 004	2.2100e- 003	25.7051

3.4 Building Construction - 2024

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		
Off-Road	0.1442	1.3175	1.5844	2.6400e- 003		0.0601	0.0601	- 	0.0565	0.0565	0.0000	227.2121	227.2121	0.0537	0.0000	228.5554
Total	0.1442	1.3175	1.5844	2.6400e- 003		0.0601	0.0601		0.0565	0.0565	0.0000	227.2121	227.2121	0.0537	0.0000	228.5554

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

3.4 Building Construction - 2024

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0404	1.0059	0.4846	5.4800e- 003	0.1893	9.7600e- 003	0.1991	0.0546	9.3300e- 003	0.0640	0.0000	522.3352	522.3352	2.2100e- 003	0.0711	543.5817
Worker	0.2045	0.1363	1.6214	4.7200e- 003	0.5819	2.6400e- 003	0.5846	0.1546	2.4300e- 003	0.1570	0.0000	432.6140	432.6140	0.0128	0.0126	436.6987
Total	0.2449	1.1421	2.1059	0.0102	0.7712	0.0124	0.7836	0.2092	0.0118	0.2210	0.0000	954.9492	954.9492	0.0150	0.0837	980.2805

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		
Off-Road	0.1442	1.3175	1.5844	2.6400e- 003		0.0601	0.0601	1 1 1	0.0565	0.0565	0.0000	227.2119	227.2119	0.0537	0.0000	228.5551
Total	0.1442	1.3175	1.5844	2.6400e- 003		0.0601	0.0601		0.0565	0.0565	0.0000	227.2119	227.2119	0.0537	0.0000	228.5551

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

3.4 Building Construction - 2024

Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	7/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0404	1.0059	0.4846	5.4800e- 003	0.1625	9.7600e- 003	0.1723	0.0481	9.3300e- 003	0.0574	0.0000	522.3352	522.3352	2.2100e- 003	0.0711	543.5817
Worker	0.2045	0.1363	1.6214	4.7200e- 003	0.4811	2.6400e- 003	0.4837	0.1298	2.4300e- 003	0.1322	0.0000	432.6140	432.6140	0.0128	0.0126	436.6987
Total	0.2449	1.1421	2.1059	0.0102	0.6436	0.0124	0.6560	0.1779	0.0118	0.1896	0.0000	954.9492	954.9492	0.0150	0.0837	980.2805

3.5 Paving - 2024

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Off-Road	0.0425	0.4096	0.6289	9.8000e- 004		0.0202	0.0202	1 1 1	0.0185	0.0185	0.0000	86.1141	86.1141	0.0279	0.0000	86.8104
Paving	0.0199					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0624	0.4096	0.6289	9.8000e- 004		0.0202	0.0202		0.0185	0.0185	0.0000	86.1141	86.1141	0.0279	0.0000	86.8104

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

3.5 Paving - 2024

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	7/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	1.8300e- 003	1.2200e- 003	0.0145	4.0000e- 005	5.2000e- 003	2.0000e- 005	5.2300e- 003	1.3800e- 003	2.0000e- 005	1.4000e- 003	0.0000	3.8686	3.8686	1.1000e- 004	1.1000e- 004	3.9052
Total	1.8300e- 003	1.2200e- 003	0.0145	4.0000e- 005	5.2000e- 003	2.0000e- 005	5.2300e- 003	1.3800e- 003	2.0000e- 005	1.4000e- 003	0.0000	3.8686	3.8686	1.1000e- 004	1.1000e- 004	3.9052

Mitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		
Off-Road	0.0425	0.4096	0.6289	9.8000e- 004		0.0202	0.0202		0.0185	0.0185	0.0000	86.1140	86.1140	0.0279	0.0000	86.8103
Paving	0.0199					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0624	0.4096	0.6289	9.8000e- 004		0.0202	0.0202		0.0185	0.0185	0.0000	86.1140	86.1140	0.0279	0.0000	86.8103

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

3.5 Paving - 2024

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	1.8300e- 003	1.2200e- 003	0.0145	4.0000e- 005	4.3000e- 003	2.0000e- 005	4.3300e- 003	1.1600e- 003	2.0000e- 005	1.1800e- 003	0.0000	3.8686	3.8686	1.1000e- 004	1.1000e- 004	3.9052
Total	1.8300e- 003	1.2200e- 003	0.0145	4.0000e- 005	4.3000e- 003	2.0000e- 005	4.3300e- 003	1.1600e- 003	2.0000e- 005	1.1800e- 003	0.0000	3.8686	3.8686	1.1000e- 004	1.1000e- 004	3.9052

3.6 Architectural Coating - 2024

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		
Archit. Coating	2.5892	1 1 1				0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	7.7700e- 003	0.0524	0.0778	1.3000e- 004		2.6200e- 003	2.6200e- 003		2.6200e- 003	2.6200e- 003	0.0000	10.9790	10.9790	6.2000e- 004	0.0000	10.9945
Total	2.5970	0.0524	0.0778	1.3000e- 004		2.6200e- 003	2.6200e- 003		2.6200e- 003	2.6200e- 003	0.0000	10.9790	10.9790	6.2000e- 004	0.0000	10.9945

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

3.6 Architectural Coating - 2024

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0179	0.0119	0.1421	4.1000e- 004	0.0510	2.3000e- 004	0.0512	0.0136	2.1000e- 004	0.0138	0.0000	37.9125	37.9125	1.1200e- 003	1.1100e- 003	38.2705
Total	0.0179	0.0119	0.1421	4.1000e- 004	0.0510	2.3000e- 004	0.0512	0.0136	2.1000e- 004	0.0138	0.0000	37.9125	37.9125	1.1200e- 003	1.1100e- 003	38.2705

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	'/yr		
Archit. Coating	2.5892					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	7.7700e- 003	0.0524	0.0778	1.3000e- 004		2.6200e- 003	2.6200e- 003		2.6200e- 003	2.6200e- 003	0.0000	10.9790	10.9790	6.2000e- 004	0.0000	10.9944
Total	2.5970	0.0524	0.0778	1.3000e- 004		2.6200e- 003	2.6200e- 003		2.6200e- 003	2.6200e- 003	0.0000	10.9790	10.9790	6.2000e- 004	0.0000	10.9944

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

3.6 Architectural Coating - 2024

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0179	0.0119	0.1421	4.1000e- 004	0.0422	2.3000e- 004	0.0424	0.0114	2.1000e- 004	0.0116	0.0000	37.9125	37.9125	1.1200e- 003	1.1100e- 003	38.2705
Total	0.0179	0.0119	0.1421	4.1000e- 004	0.0422	2.3000e- 004	0.0424	0.0114	2.1000e- 004	0.0116	0.0000	37.9125	37.9125	1.1200e- 003	1.1100e- 003	38.2705

4.0 Operational Detail - Mobile

4.1 Mitigation Measures Mobile

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		
Mitigated	0.4780	3.0537	5.7406	0.0251	2.1120	0.0341	2.1461	0.5686	0.0323	0.6010	0.0000	2,351.503 9	2,351.503 9	0.0481	0.2077	2,414.590 5
Unmitigated	0.4780	3.0537	5.7406	0.0251	2.1120	0.0341	2.1461	0.5686	0.0323	0.6010	0.0000	2,351.503 9	2,351.503 9	0.0481	0.2077	2,414.590 5

4.2 Trip Summary Information

	Aver	age Daily Trip Ra	ite	Unmitigated	Mitigated
Land Use	Weekday	Saturday	Sunday	Annual VMT	Annual VMT
General Office Building	389.60	88.40	28.00	704,772	704,772
Other Asphalt Surfaces	0.00	0.00	0.00		
Parking Lot	0.00	0.00	0.00		
Parking Lot	0.00	0.00	0.00		
Parking Lot	0.00	0.00	0.00		
Parking Lot	0.00	0.00	0.00		
Refrigerated Warehouse-No Rail	448.30	448.30	448.30	1,308,803	1,308,803
Unrefrigerated Warehouse-No Rail	1,184.18	1,184.18	1184.18	3,457,215	3,457,215
Total	2,022.07	1,720.87	1,660.47	5,470,790	5,470,790

4.3 Trip Type Information

		Miles			Trip %			Trip Purpos	e %
Land Use	H-W or C-W	H-S or C-C	H-O or C-NW	H-W or C-W	H-S or C-C	H-O or C-NW	Primary	Diverted	Pass-by
General Office Building	9.50	7.30	7.30	33.00	48.00	19.00	77	19	4
Other Asphalt Surfaces	9.50	7.30	7.30	0.00	0.00	0.00	0	0	0
Parking Lot	9.50	7.30	7.30	0.00	0.00	0.00	0	0	0
Parking Lot	9.50	7.30	7.30	0.00	0.00	0.00	0	0	0

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

		Miles			Trip %			Trip Purpos	e %
Land Use	H-W or C-W	H-S or C-C	H-O or C-NW	H-W or C-W	H-S or C-C	H-O or C-NW	Primary	Diverted	Pass-by
Parking Lot	9.50	7.30	7.30	0.00	0.00	0.00	0	0	0
Parking Lot	9.50	7.30	7.30	0.00	0.00	0.00	0	0	0
Refrigerated Warehouse-No	9.50	7.30	7.30	59.00	0.00	41.00	92	5	3
Unrefrigerated Warehouse-No	9.50	7.30	7.30	59.00	0.00	41.00	92	5	3

4.4 Fleet Mix

Land Use	LDA	LDT1	LDT2	MDV	LHD1	LHD2	MHD	HHD	OBUS	UBUS	MCY	SBUS	MH
General Office Building	0.530590	0.056931	0.174803	0.137616	0.029294	0.007692	0.006155	0.022126	0.000483	0.000158	0.027801	0.000928	0.005423
Other Asphalt Surfaces	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
Parking Lot	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
Refrigerated Warehouse-No Rail	0.795700	0.000000	0.000000	0.000000	0.000000	0.034600	0.046400	0.123300	0.000000	0.000000	0.000000	0.000000	0.000000
Unrefrigerated Warehouse-No Rail	0.795700	0.000000	0.000000	0.000000	0.000000	0.034600	0.046400	0.123300	0.000000	0.000000	0.000000	0.000000	0.000000

5.0 Energy Detail

Historical Energy Use: N

5.1 Mitigation Measures Energy

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		
Electricity Mitigated						0.0000	0.0000		0.0000	0.0000	0.0000	1,943.881 4	1,943.881 4	0.1641	0.0199	1,953.909 5
Electricity Unmitigated	Francisco					0.0000	0.0000		0.0000	0.0000	0.0000	1,943.881 4	1,943.881 4	0.1641	0.0199	1,953.909 5
NaturalGas Mitigated	0.0689	0.6263	0.5261	3.7600e- 003		0.0476	0.0476		0.0476	0.0476	0.0000	681.7848	681.7848	0.0131	0.0125	685.8363
NaturalGas Unmitigated	0.0689	0.6263	0.5261	3.7600e- 003		0.0476	0.0476		0.0476	0.0476	0.0000	681.7848	681.7848	0.0131	0.0125	685.8363

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

5.2 Energy by Land Use - NaturalGas

Unmitigated

	NaturalGa s Use	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					ton	s/yr							MT	/yr		
General Office Building	137200	7.4000e- 004	6.7300e- 003	5.6500e- 003	4.0000e- 005		5.1000e- 004	5.1000e- 004		5.1000e- 004	5.1000e- 004	0.0000	7.3215	7.3215	1.4000e- 004	1.3000e- 004	7.3650
Other Asphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Parking Lot	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Refrigerated Warehouse-No Rail	1.09388e +007	0.0590	0.5362	0.4504	3.2200e- 003		0.0408	0.0408		0.0408	0.0408	0.0000	583.7374	583.7374	0.0112	0.0107	587.2063
Unrefrigerated Warehouse-No Rail	1.70014e +006	9.1700e- 003	0.0833	0.0700	5.0000e- 004		6.3300e- 003	6.3300e- 003		6.3300e- 003	6.3300e- 003	0.0000	90.7259	90.7259	1.7400e- 003	1.6600e- 003	91.2650
Total		0.0689	0.6263	0.5261	3.7600e- 003		0.0476	0.0476		0.0476	0.0476	0.0000	681.7848	681.7848	0.0131	0.0125	685.8363

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

5.2 Energy by Land Use - NaturalGas

Mitigated

	NaturalGa s Use	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					ton	s/yr							МТ	/yr		
General Office Building	137200	7.4000e- 004	6.7300e- 003	5.6500e- 003	4.0000e- 005		5.1000e- 004	5.1000e- 004		5.1000e- 004	5.1000e- 004	0.0000	7.3215	7.3215	1.4000e- 004	1.3000e- 004	7.3650
Other Asphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Parking Lot	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Refrigerated Warehouse-No Rail	1.09388e +007	0.0590	0.5362	0.4504	3.2200e- 003		0.0408	0.0408		0.0408	0.0408	0.0000	583.7374	583.7374	0.0112	0.0107	587.2063
Unrefrigerated Warehouse-No Rail	1.70014e +006	9.1700e- 003	0.0833	0.0700	5.0000e- 004		6.3300e- 003	6.3300e- 003		6.3300e- 003	6.3300e- 003	0.0000	90.7259	90.7259	1.7400e- 003	1.6600e- 003	91.2650
Total		0.0689	0.6263	0.5261	3.7600e- 003		0.0476	0.0476		0.0476	0.0476	0.0000	681.7848	681.7848	0.0131	0.0125	685.8363

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

5.3 Energy by Land Use - Electricity

Unmitigated

	Electricity Use	Total CO2	CH4	N2O	CO2e
Land Use	kWh/yr		МТ	/yr	
General Office Building	367600	65.1922	5.5000e- 003	6.7000e- 004	65.5285
Other Asphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000
Parking Lot	134927	23.9287	2.0200e- 003	2.4000e- 004	24.0522
Parking Lot	71540	12.6873	1.0700e- 003	1.3000e- 004	12.7528
Refrigerated Warehouse-No Rail	8.42457e +006	1,494.059 3	0.1261	0.0153	1,501.766 9
Unrefrigerated Warehouse-No Rail	1.96235e +006	348.0138	0.0294	3.5600e- 003	349.8092
Total		1,943.881 4	0.1641	0.0199	1,953.909 5

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

5.3 Energy by Land Use - Electricity

Mitigated

	Electricity Use	Total CO2	CH4	N2O	CO2e
Land Use	kWh/yr		MT	/yr	
General Office Building	367600	65.1922	5.5000e- 003	6.7000e- 004	65.5285
Other Asphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000
Parking Lot	134927	23.9287	2.0200e- 003	2.4000e- 004	24.0522
Parking Lot	71540	12.6873	1.0700e- 003	1.3000e- 004	12.7528
Refrigerated Warehouse-No Rail	8.42457e +006	1,494.059 3	0.1261	0.0153	1,501.766 9
Unrefrigerated Warehouse-No Rail	1.96235e +006	348.0138	0.0294	3.5600e- 003	349.8092
Total		1,943.881 4	0.1641	0.0199	1,953.909 5

6.0 Area Detail

6.1 Mitigation Measures Area

Use Low VOC Paint - Non-Residential Interior Use Low VOC Paint - Non-Residential Exterior No Hearths Installed Use Low VOC Cleaning Supplies

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	tons/yr										МТ	/yr				
Mitigated	4.0612	1.3000e- 004	0.0149	0.0000		5.0000e- 005	5.0000e- 005		5.0000e- 005	5.0000e- 005	0.0000	0.0289	0.0289	8.0000e- 005	0.0000	0.0308
Unmitigated	5.6244	1.3000e- 004	0.0149	0.0000		5.0000e- 005	5.0000e- 005	 - - - -	5.0000e- 005	5.0000e- 005	0.0000	0.0289	0.0289	8.0000e- 005	0.0000	0.0308

6.2 Area by SubCategory

Unmitigated

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory		tons/yr									MT/yr					
Architectural Coating	1.2946					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Consumer Products	4.3285	,	,		,	0.0000	0.0000	,	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Landscaping	1.3700e- 003	1.3000e- 004	0.0149	0.0000	,	5.0000e- 005	5.0000e- 005		5.0000e- 005	5.0000e- 005	0.0000	0.0289	0.0289	8.0000e- 005	0.0000	0.0308
Total	5.6244	1.3000e- 004	0.0149	0.0000		5.0000e- 005	5.0000e- 005		5.0000e- 005	5.0000e- 005	0.0000	0.0289	0.0289	8.0000e- 005	0.0000	0.0308

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

6.2 Area by SubCategory

Mitigated

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory	tons/yr								MT/yr							
Architectural Coating	0.0518	1 1 1				0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Consumer Products	4.0080					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Landscaping	1.3700e- 003	1.3000e- 004	0.0149	0.0000		5.0000e- 005	5.0000e- 005		5.0000e- 005	5.0000e- 005	0.0000	0.0289	0.0289	8.0000e- 005	0.0000	0.0308
Total	4.0612	1.3000e- 004	0.0149	0.0000		5.0000e- 005	5.0000e- 005		5.0000e- 005	5.0000e- 005	0.0000	0.0289	0.0289	8.0000e- 005	0.0000	0.0308

7.0 Water Detail

7.1 Mitigation Measures Water

Install Low Flow Bathroom Faucet

Install Low Flow Toilet

Use Water Efficient Irrigation System

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

	Total CO2	CH4	N2O	CO2e					
Category	MT/yr								
Mitigated	587.2271	7.2290	0.1750	820.0887					
Unmitigated	669.4314	8.2485	0.1996	935.1306					

7.2 Water by Land Use <u>Unmitigated</u>

	Indoor/Out door Use	Total CO2	CH4	N2O	CO2e				
Land Use	Mgal	MT/yr							
General Office Building	7.10935 / 4.35734	27.2578	0.2338	5.7300e- 003	34.8083				
Other Asphalt Surfaces	0/0	0.0000	0.0000	0.0000	0.0000				
Parking Lot	0/0	0.0000	0.0000	0.0000	0.0000				
Refrigerated Warehouse-No Rail	48.9001 / 0	128.4347	1.6029	0.0388	180.0645				
Unrefrigerated Warehouse-No Rail	195.601 / 0	513.7389	6.4118	0.1551	720.2579				
Total		669.4314	8.2485	0.1996	935.1306				

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

7.2 Water by Land Use

Mitigated

	Indoor/Out door Use	Total CO2	CH4	N2O	CO2e						
Land Use	Mgal		MT/yr								
General Office Building	6.23063 / 4.09155	24.4262	0.2049	5.0200e- 003	31.0462						
Other Asphalt Surfaces	0/0	0.0000	0.0000	0.0000	0.0000						
Parking Lot	0/0	0.0000	0.0000	0.0000	0.0000						
Refrigerated Warehouse-No Rail	42.8561 / 0	112.5602	1.4048	0.0340	157.8085						
Unrefrigerated Warehouse-No Rail	171.424 / 0	450.2408	5.6193	0.1359	631.2340						
Total		587.2271	7.2290	0.1750	820.0887						

8.0 Waste Detail

8.1 Mitigation Measures Waste

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

Category/Year

	Total CO2	CH4	N2O	CO2e						
	MT/yr									
Mitigated	209.2959	12.3690	0.0000	518.5216						
Unmitigated	209.2959	12.3690	0.0000	518.5216						

8.2 Waste by Land Use <u>Unmitigated</u>

	Waste Disposed	Total CO2	CH4	N2O	CO2e					
Land Use	tons	MT/yr								
General Office Building	37.2	7.5513	0.4463	0.0000	18.7079					
Other Asphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000					
Parking Lot	0	0.0000	0.0000	0.0000	0.0000					
Refrigerated Warehouse-No Rail	198.77	40.3485	2.3845	0.0000	99.9617					
Unrefrigerated Warehouse-No Rail	795.09	161.3961	9.5382	0.0000	399.8520					
Total		209.2959	12.3690	0.0000	518.5216					

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

8.2 Waste by Land Use

Mitigated

	Waste Disposed	Total CO2	CH4	N2O	CO2e					
Land Use	tons	MT/yr								
General Office Building	37.2	7.5513	0.4463	0.0000	18.7079					
Other Asphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000					
Parking Lot	0	0.0000	0.0000	0.0000	0.0000					
Refrigerated Warehouse-No Rail	198.77	40.3485	2.3845	0.0000	99.9617					
Unrefrigerated Warehouse-No Rail	795.09	161.3961	9.5382	0.0000	399.8520					
Total		209.2959	12.3690	0.0000	518.5216					

9.0 Operational Offroad

Equipment Type	Number	Hours/Day	Days/Year	Horse Power	Load Factor	Fuel Type
Forklifts	120	8.00	365	89	0.20	Electrical
Tractors/Loaders/Backhoes	4	8.00	365	97	0.37	CNG

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

UnMitigated/Mitigated

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Equipment Type	e tons/yr								MT/yr							
Forklifts	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Tractors/Loaders/ Backhoes	0.1051	1.0572	1.6320	2.2800e- 003		0.0485	0.0485		0.0446	0.0446	0.0000	199.8432	199.8432	0.0646	0.0000	201.4591
Total	0.1051	1.0572	1.6320	2.2800e- 003		0.0485	0.0485		0.0446	0.0446	0.0000	199.8432	199.8432	0.0646	0.0000	201.4591

10.0 Stationary Equipment

Fire Pumps and Emergency Generators

	Equipment Type	Number	Hours/Day	Hours/Year	Horse Power	Load Factor	Fuel Type
--	----------------	--------	-----------	------------	-------------	-------------	-----------

Boilers

	Equipment Type	Number	Heat Input/Day	Heat Input/Year	Boiler Rating	Fuel Type
--	----------------	--------	----------------	-----------------	---------------	-----------

User Defined Equipment

Equipment Type

Number

11.0 Vegetation

CalEEMod Version: CalEEMod.2020.4.0

Page 1 of 11

Victorville-IPG Mojave 68 Project

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

Mojave Desert AQMD Air District, Mitigation Report

Construction Mitigation Summary

Phase	ROG	NOx	со	SO2	Exhaust PM10	Exhaust PM2.5	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
				Percent	Reduction							
Architectural Coating	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Building Construction	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Grading	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Paving	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Site Preparation	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

OFFROAD Equipment Mitigation

CalEEMod Version: CalEEMod.2020.4.0

Page 2 of 11

Victorville-IPG Mojave 68 Project

Equipment Type	Fuel Type	Tier	Number Mitigated	Total Number of Equipment	DPF	Oxidation Catalyst
Air Compressors	Diesel	No Change	0	1	No Change	0.00
Cranes	Diesel	No Change	0	1	No Change	0.00
Excavators	Diesel	No Change	0	2	No Change	0.00
Forklifts	Diesel	No Change	0	3	No Change	0.00
Generator Sets	Diesel	No Change	0	1	No Change	0.00
Graders	Diesel	No Change	0	1	No Change	0.00
Pavers	Diesel	No Change	0	2	No Change	0.00
Paving Equipment	Diesel	No Change	0	2	No Change	0.00
Rollers	Diesel	No Change	0	2	No Change	0.00
Rubber Tired Dozers	Diesel	No Change	0	4	No Change	0.00
Scrapers	Diesel	No Change	0	2	No Change	0.00
Tractors/Loaders/Backhoes	Diesel	No Change	0	9	No Change	0.00
Welders	Diesel	No Change	0	1	No Change	0.00

Equipment Type	ROG	NOx	СО	SO2	Exhaust PM10	Exhaust PM2.5	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e		
		U	nmitigated tons/yr				Unmitigated mt/yr							
Air Compressors	7.77000E-003	5.24100E-002	7.78400E-002	1.30000E-004	2.62000E-003	2.62000E-003	0.00000E+000	1.09790E+001	1.09790E+001	6.20000E-004	0.00000E+000	1.09945E+001		
Cranes	2.92200E-002	3.08840E-001	1.56190E-001	5.10000E-004	1.28500E-002	1.18200E-002	0.00000E+000	4.45792E+001	4.45792E+001	1.44200E-002	0.00000E+000	4.49396E+001		
Excavators	9.62000E-003	7.89800E-002	1.66150E-001	2.60000E-004	3.87000E-003	3.56000E-003	0.00000E+000	2.31381E+001	2.31381E+001	7.48000E-003	0.00000E+000	2.33252E+001		
Forklifts	2.84600E-002	2.66950E-001	3.43540E-001	4.60000E-004	1.54500E-002	1.42100E-002	0.00000E+000	4.04888E+001	4.04888E+001	1.30900E-002	0.00000E+000	4.08162E+001		
Generator Sets	2.87000E-002	2.56150E-001	3.68230E-001	6.60000E-004	1.11700E-002	1.11700E-002	0.00000E+000	5.68034E+001	5.68034E+001	2.30000E-003	0.00000E+000	5.68610E+001		
Graders	9.78000E-003	1.18650E-001	4.31600E-002	1.70000E-004	3.84000E-003	3.54000E-003	0.00000E+000	1.48250E+001	1.48250E+001	4.79000E-003	0.00000E+000	1.49449E+001		
Pavers	1.57900E-002	1.49800E-001	2.48800E-001	4.00000E-004	6.99000E-003	6.44000E-003	0.00000E+000	3.55108E+001	3.55108E+001	1.14800E-002	0.00000E+000	3.57979E+001		
Paving Equipment	1.41700E-002	1.28670E-001	2.21010E-001	3.50000E-004	6.21000E-003	5.72000E-003	0.00000E+000	3.07754E+001	3.07754E+001	9.95000E-003	0.00000E+000	3.10242E+001		
Rollers	1.25300E-002	1.31090E-001	1.59110E-001	2.30000E-004	6.94000E-003	6.38000E-003	0.00000E+000	1.98279E+001	1.98279E+001	6.41000E-003	0.00000E+000	1.99882E+001		
Rubber Tired Dozers	4.82700E-002	5.02460E-001	2.19000E-001	6.00000E-004	2.26300E-002	2.08200E-002	0.00000E+000	5.28921E+001	5.28921E+001	1.71100E-002	0.00000E+000	5.33198E+001		
Scrapers	4.01300E-002	4.22450E-001	3.12990E-001	7.70000E-004	1.65600E-002	1.52400E-002	0.00000E+000	6.80176E+001	6.80176E+001	2.20000E-002	0.00000E+000	6.85676E+001		
Tractors/Loaders/ Backhoes	5.48200E-002	5.53100E-001	8.37430E-001	1.17000E-003	2.60100E-002	2.39300E-002	0.00000E+000	1.02588E+002	1.02588E+002	3.31800E-002	0.00000E+000	1.03417E+002		
Welders	2.37500E-002	1.38870E-001	1.67240E-001	2.60000E-004	4.79000E-003	4.79000E-003	0.00000E+000	1.89162E+001	1.89162E+001	1.93000E-003	0.00000E+000	1.89645E+001		

	ROG	NOv	0	502	Exhaust PM10	Exhaust PM2 5	Bio- CO2	NBio- CO2	Total CO2	СНИ	N2O	CO2e		
	Roo	MOX	itigated tons/yr	002	Exhladist Filmito	EXHAUST I W2.5	Mitigated mt/yr							
Air Compressors	7.77000E-003	5.24100E-002	7.78400E-002	1.30000E-004	2.62000E-003	2.62000E-003	0.00000E+000	1.09790E+001	1.09790E+001	6.20000E-004	0.00000E+000	1.09944E+001		
Cranes	2.92200E-002	3.08840E-001	1.56190E-001	5.10000E-004	1.28500E-002	1.18200E-002	0.00000E+000	4.45791E+001	4.45791E+001	1.44200E-002	0.00000E+000	4.49396E+001		
Excavators	9.62000E-003	7.89800E-002	1.66150E-001	2.60000E-004	3.87000E-003	3.56000E-003	0.00000E+000	2.31381E+001	2.31381E+001	7.48000E-003	0.00000E+000	2.33252E+001		
Forklifts	2.84600E-002	2.66950E-001	3.43540E-001	4.60000E-004	1.54500E-002	1.42100E-002	0.00000E+000	4.04888E+001	4.04888E+001	1.30900E-002	0.00000E+000	4.08162E+001		
Generator Sets	2.87000E-002	2.56150E-001	3.68230E-001	6.60000E-004	1.11700E-002	1.11700E-002	0.00000E+000	5.68033E+001	5.68033E+001	2.30000E-003	0.00000E+000	5.68609E+001		
Graders	9.78000E-003	1.18650E-001	4.31600E-002	1.70000E-004	3.84000E-003	3.54000E-003	0.00000E+000	1.48250E+001	1.48250E+001	4.79000E-003	0.00000E+000	1.49449E+001		
Pavers	1.57900E-002	1.49800E-001	2.48800E-001	4.00000E-004	6.99000E-003	6.44000E-003	0.00000E+000	3.55108E+001	3.55108E+001	1.14800E-002	0.00000E+000	3.57979E+001		
Paving Equipment	1.41700E-002	1.28670E-001	2.21010E-001	3.50000E-004	6.21000E-003	5.72000E-003	0.00000E+000	3.07753E+001	3.07753E+001	9.95000E-003	0.00000E+000	3.10242E+001		
Rollers	1.25300E-002	1.31090E-001	1.59110E-001	2.30000E-004	6.94000E-003	6.38000E-003	0.00000E+000	1.98279E+001	1.98279E+001	6.41000E-003	0.00000E+000	1.99882E+001		
Rubber Tired Dozers	4.82700E-002	5.02460E-001	2.19000E-001	6.00000E-004	2.26300E-002	2.08200E-002	0.00000E+000	5.28920E+001	5.28920E+001	1.71100E-002	0.00000E+000	5.33197E+001		
Scrapers	4.01200E-002	4.22450E-001	3.12990E-001	7.70000E-004	1.65600E-002	1.52400E-002	0.00000E+000	6.80175E+001	6.80175E+001	2.20000E-002	0.00000E+000	6.85675E+001		
Tractors/Loaders/Ba ckhoes	5.48200E-002	5.53100E-001	8.37430E-001	1.17000E-003	2.60100E-002	2.39300E-002	0.00000E+000	1.02588E+002	1.02588E+002	3.31800E-002	0.00000E+000	1.03417E+002		
Welders	2.37500E-002	1.38870E-001	1.67240E-001	2.60000E-004	4.79000E-003	4.79000E-003	0.00000E+000	1.89162E+001	1.89162E+001	1.93000E-003	0.00000E+000	1.89645E+001		

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

	500	NO			Full suit DM40	Full aust DM0 F			Tatal 000	014	NICO	000-
Equipment Type	RUG	NOX	CO	502	Exhaust PM10	Exhaust PM2.5	BI0- CO2	NBI0- CO2	l otal CO2	CH4	N20	CO2e
					Pe	rcent Reduction						
Air Compressors	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	9.10831E-007	9.10831E-007	0.00000E+000	0.00000E+000	1.81910E-006
Cranes	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	1.12160E-006	1.12160E-006	0.00000E+000	0.00000E+000	1.33512E-006
Excavators	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	1.29656E-006	1.29656E-006	0.00000E+000	0.00000E+000	1.28616E-006
Forklifts	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	1.23491E-006	1.23491E-006	0.00000E+000	0.00000E+000	1.22500E-006
Generator Sets	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	1.23232E-006	1.23232E-006	0.00000E+000	0.00000E+000	1.23107E-006
Graders	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	1.34907E-006	1.34907E-006	0.00000E+000	0.00000E+000	1.33825E-006
Pavers	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	1.12642E-006	1.12642E-006	0.00000E+000	0.00000E+000	1.11738E-006
Paving Equipment	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	1.29974E-006	1.29974E-006	0.00000E+000	0.00000E+000	1.28932E-006
Rollers	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	1.00868E-006	1.00868E-006	0.00000E+000	0.00000E+000	1.00059E-006
Rubber Tired Dozers	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	1.13439E-006	1.13439E-006	0.00000E+000	0.00000E+000	1.12529E-006
Scrapers	2.49190E-004	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	1.17617E-006	1.17617E-006	0.00000E+000	0.00000E+000	1.31257E-006
Tractors/Loaders/Ba ckhoes	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	1.16973E-006	1.16973E-006	0.00000E+000	0.00000E+000	1.16035E-006
Welders	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	1.05730E-006	1.05730E-006	0.00000E+000	0.00000E+000	1.05460E-006

Fugitive Dust Mitigation

Yes/No	Mitigation Measure	Mitigation Input	Mitigation Input	Mitigation Input	
No	Soil Stabilizer for unpaved Roads	PM10 Reduction	0.00 PM2.5 Reduction	0.00	

CalEEMod Version: CalEEMod.2020.4.0

Page 6 of 11

Victorville-IPG Mojave 68 Project

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

No	Replace Ground Cover of Area Disturbed	PM10 Reduction	0.00	PM2.5 Reduction	0.00		
Yes	Water Exposed Area	PM10 Reduction	61.00	PM2.5 Reduction	61.00	Frequency (per day)	3.00
No	Unpaved Road Mitigation	Moisture Content %	0.00	Vehicle Speed (mph)	20.00		
Yes	Clean Paved Road	% PM Reduction	20.00				

		Unmitigated			tigated	Percent Reduction		
Phase	Source	PM10	PM2.5	PM10	PM2.5	PM10	PM2.5	
Architectural Coating	Fugitive Dust	0.00	0.00	0.00	0.00	0.00	0.00	
Architectural Coating	Roads	0.05	0.01	0.04	0.01	0.17	0.16	
Building Construction	Fugitive Dust	0.00	0.00	0.00	0.00	0.00	0.00	
Building Construction	Roads	0.79	0.21	0.66	0.18	0.17	0.15	
Grading	Fugitive Dust	0.27	0.10	0.11	0.04	0.61	0.61	
Grading	Roads	0.01	0.00	0.01	0.00	0.16	0.15	
Paving	Fugitive Dust	0.00	0.00	0.00	0.00	0.00	0.00	
Paving	Roads	0.01	0.00	0.00	0.00	0.17	0.16	
Site Preparation	Fugitive Dust	0.29	0.15	0.11	0.06	0.61	0.61	
Site Preparation	Roads	0.00	0.00	0.00	0.00	0.17	0.16	

Operational Percent Reduction Summary

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

Category	ROG	NOx	со	SO2	Exhaust PM10	Exhaust PM2.5	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
			Percent	Reduction								
Architectural Coating	96.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Consumer Products	7.40	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hearth	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Landscaping	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Mobile	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Natural Gas	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Water Indoor	0.00	0.00	0.00	0.00	0.00	0.00	12.36	12.27	12.28	12.36	12.36	12.30
Water Outdoor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Operational Mobile Mitigation

Project Setting:

Mitigation	Category	Measure	% Reduction	Input Value 1	Input Value 2	Input Value 3
No	Land Use	Increase Density	0.00			
No	Land Use	Increase Diversity	0.10	0.32		
No	Land Use	Improve Walkability Design	0.00			
No	Land Use	Improve Destination Accessibility	0.00			
No	Land Use	Increase Transit Accessibility	0.25			
No	Land Use	Integrate Below Market Rate Housing	0.00			
[Land Use	Land Use SubTotal	0.00			

CalEEMod Version: CalEEMod.2020.4.0

Page 8 of 11

Victorville-IPG Mojave 68 Project

Neighborhood Enhancements	Improve Pedestrian Network			
Neighborhood Enhancements	Provide Traffic Calming Measures			
Neighborhood Enhancements	Implement NEV Network	0.00		
Neighborhood Enhancements	Neighborhood Enhancements Subtotal	0.00		
Parking Policy Pricing	Limit Parking Supply	0.00		
Parking Policy Pricing	Unbundle Parking Costs	0.00		
Parking Policy Pricing	On-street Market Pricing	0.00		
Parking Policy Pricing	Parking Policy Pricing Subtotal	0.00		
Transit Improvements	Provide BRT System	0.00		
Transit Improvements	Expand Transit Network	0.00		
Transit Improvements	Increase Transit Frequency	0.00		
Transit Improvements	Transit Improvements Subtotal	0.00		
	Land Use and Site Enhancement Subtotal	0.00		
Commute	Implement Trip Reduction Program			
Commute	Transit Subsidy			
Commute	Implement Employee Parking "Cash Out"			
Commute	Workplace Parking Charge			
Commute	Encourage Telecommuting and Alternative Work Schedules	0.00		
Commute	Market Commute Trip Reduction Option	0.00		
Commute	Employee Vanpool/Shuttle	0.00	2.0	0
	Neighborhood Enhancements Neighborhood Enhancements Neighborhood Enhancements Neighborhood Enhancements Parking Policy Pricing Parking Policy Pricing Parking Policy Pricing Transit Improvements Transit Improvements Transit Improvements Commute Co	Neighborhood EnhancementsImprove Pedestrian NetworkNeighborhood EnhancementsProvide Traffic Calming MeasuresNeighborhood EnhancementsImplement NEV NetworkNeighborhood EnhancementsNeighborhood Enhancements SubtotalParking Policy PricingLimit Parking SupplyParking Policy PricingUnbundle Parking CostsParking Policy PricingOn-street Market PricingParking Policy PricingParking Policy Pricing SubtotalTransit ImprovementsProvide BRT SystemTransit ImprovementsIncrease Transit NetworkTransit ImprovementsTransit Improvements SubtotalCommuteImplement Trip Reduction ProgramCommuteImplement Employee Parking "Cash Out"CommuteEncourage Telecommuting and Alternative Work SchedulesCommuteMarket Commute Trip Reduction OptionCommuteEncourage Telecommuting and Alternative Work Schedules	Neighborhood EnhancementsImprove Pedestrian NetworkNeighborhood EnhancementsProvide Traffic Calming MeasuresNeighborhood EnhancementsImplement NEV Network0.00Neighborhood EnhancementsNeighborhood Enhancements Subtotal0.00Parking Policy PricingLimit Parking Supply0.00Parking Policy PricingUnbundle Parking Costs0.00Parking Policy PricingOn-street Market Pricing0.00Parking Policy PricingParking Policy Pricing0.00Parking Policy PricingParking Policy Pricing Subtotal0.00Transit ImprovementsProvide BRT System0.00Transit ImprovementsIncrease Transit Network0.00Transit ImprovementsIncrease Transit Frequency0.00Transit ImprovementsTransit Improvements Subtotal0.00CommuteImplement Trip Reduction Program0.00CommuteImplement Employee Parking "Cash Out"0.00CommuteEncourage Telecommuting and Alternative Work Schedules0.00CommuteEncourage Telecommuting and Alternative Work Schedules0.00	Neighborhood Enhancements Improve Pedestrian Network Neighborhood Enhancements Provide Traffic Calming Measures Neighborhood Enhancements Implement NEV Network 0.00 Neighborhood Enhancements Neighborhood Enhancements Subtotal 0.00 Parking Policy Pricing Limit Parking Supply 0.00 Parking Policy Pricing Unbundle Parking Costs 0.00 Parking Policy Pricing On-street Market Pricing 0.00 Parking Policy Pricing Parking Policy Pricing Subtotal 0.00 Parking Policy Pricing Parking Policy Pricing Subtotal 0.00 Parking Policy Pricing Parking Policy Pricing Subtotal 0.00 Transit Improvements Expand Transit Network 0.00 Transit Improvements Increase Transit Frequency 0.00 Transit Improvements Increase Transit Frequency 0.00 Commute Implement Trip Reduction Program 0.00 Commute Implement Employee Parking 'Cash Out' 0.00 Commute Encourage Telecommuting and Alternative 0.00 Commute Market Commute Trip Reduction Option 0.00 Commute Market Commute
CalEEMod Version: CalEEMod.2020.4.0

Page 9 of 11

Date: 12/6/2022 8:47 AM

Victorville-IPG Mojave 68 Project

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

No	Commute	Provide Ride Sharing Program		 	
	Commute	Commute Subtotal	0.00		
No	School Trip	Implement School Bus Program	0.00		
	· · · · · · · · · · · · · · · · · · ·	Total VMT Reduction	0.00	 	

Area Mitigation

Measure Implemented	Mitigation Measure	Input Value
No	Only Natural Gas Hearth	
Yes	No Hearth	
Yes	Use Low VOC Cleaning Supplies	
No	Use Low VOC Paint (Residential Interior)	10.00
No	Use Low VOC Paint (Residential Exterior)	10.00
Yes	Use Low VOC Paint (Non-residential Interior)	10.00
Yes	Use Low VOC Paint (Non-residential Exterior)	10.00
Yes	Use Low VOC Paint (Parking)	10.00
No	% Electric Lawnmower	0.00
No	% Electric Leafblower	0.00
No	% Electric Chainsaw	0.00

Energy Mitigation Measures

Measure Implemented	Mitigation Measure	Input Value 1	Input Value 2
No	Exceed Title 24		

CalEEMod Version: CalEEMod.2020.4.0

Page 10 of 11

Victorville-IPG Mojave 68 Project

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

No	Install High Efficiency Lighting	
No	On-site Renewable	

Appliance Type	Land Use Subtype	% Improvement
ClothWasher		30.00
DishWasher		15.00
Fan		50.00
Refrigerator		15.00

Water Mitigation Measures

Measure Implemented	Mitigation Measure	Input Value 1	Input Value 2
No	Apply Water Conservation on Strategy	0.00	0.00
No	Use Reclaimed Water	0.00	0.00
No	Use Grey Water	0.00	
Yes	Install low-flow bathroom faucet	32.00	
No	Install low-flow Kitchen faucet	18.00	
Yes	Install low-flow Toilet	20.00	
No	Install low-flow Shower	20.00	
No	Turf Reduction	0.00	
Yes	Use Water Efficient Irrigation Systems	6.10	
No	Water Efficient Landscape	0.00	0.00

Solid Waste Mitigation

CalEEMod Version: CalEEMod.2020.4.0

Page 11 of 11

Victorville-IPG Mojave 68 Project

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

Mitigation Measures	Input Value
Institute Recycling and Composting Services Percent Reduction in Waste Disposed	

APPENDIX B:

TRAFFIC STUDY AND VEHICLE MILES TRAVELED (VMT) SCREENING MEMORANDUM.

September 26, 2022

MEMORANDUM

- To: Craig J. Wilde **IPG Mojave 68 Holdings LLC** 991 Lomas Santa Fe Drive, Suite C PMB 469 Solana Beach, CA 92075
- From: James M. Daisa, PE Senior Transportation Project Manager

RE: SCOPING AGREEMENT FOR FOCUSED TRAFFIC IMPACT ANALYSIS AND VEHICLE MILES TRAVELED (VMT) SCREENING FOR PROPOSED INDUSTRIAL WAREHOUSE SITE LOCATED AT THE NORTHEAST CORNER OF MOJAVE DRIVE AND MESA LINDA AVENUE IN VICTORVILLE (APNS: 3128-621-02 THRU 06)

This memorandum presents key elements of the scope of work for the Focused Traffic Impact Analysis Report (TIA Report) evaluating the above referenced development project. This memorandum, a standard practice for the City of Victorville, presents our traffic study assumptions and methodologies to the City of Victorville for their review and approval. We estimate the proposed project's trip generation and distribute the trips to the project's site access points and proposed study intersections. This is key information the city needs to review and approve before we can proceed with the traffic study.

In addition to establishing the scope of the focused traffic study, this memorandum includes a screening assessment to determine if a VMT analysis for CEQA clearance of the project is required. The screening assessment is based on Victorville's adopted criteria for exempting development projects from having to conduct a VMT analysis.

A. Project Description

The project site is located on the northeast corner of the intersection of Mojave Drive and Mesa Linda Avenue in the City of Victorville, as illustrated in **Exhibit A**. The proposed project is to construct an 1,097,300 square foot (SF) warehouse building with internal office space. The warehouse building will include an 877,800 SF of high-cube transload warehouse and 219,500 SF of high-cube cold storage warehouse with loading docks lining the east side and west side of the building. The proposed project is bounded to the north, east, and west by vacant/undeveloped properties, to the south by Mojave Drive and single-family residential development.

Exhibit B illustrates the proposed site plan. Access to the site is proposed from driveways on Mojave Drive, Onyx Road, Mesa Linda Avenue, and Cactus Road.

B. Project Trip Generation

Table A summarizes the estimated trip generation of the proposed project for an average weekday, and weekday peak hours within the AM (7-9 AM) and PM (4-6 PM) peak periods. The Institute of Transportation Engineers (ITE) Trip Generation manual, 11th Edition is the source of the trip generation rates for High-Cube Transload Warehouse (Land Use Category 154) and High-Cube Cold Storage Warehouse (Land Use Category 157) trips per 1,000 square feet of gross floor area for the Peak Hour of the Adjacent Street Traffic (between 7:00 AM to 9:00 AM and 4:00 PM to 6:00 PM). The split between warehouse and cold storage warehouse was identified by the developer as 80% warehouse and 20% cold storage warehouse.

Job No. IPGIM68H-0001

Table A: Project Trip Generation

Lise		Gross Floor	Daily	AM Peak Hour of Daily Adjacent Street Traffic		PM Peak Hour of Adjacent Street Traffic			
	USC .	Area (KSF)	Dully	In	Out	Total	In	Out	Total
					Vehicle Tr	ip Genera	tion Rates	5	
	High Cube Transload Warehouse		(Trips Per 1,000 Square Feet of Gross Floor Area)						
	(Comprises 80% of Building)	877.8	1.40	0.06	0.02	0.08	0.03	0.07	0.10
	(ITE Land Use Category 154)				Total Veh	icle Trip G	eneration		
			1,229	55	16	71	25	63	88
		Mode Share		Total Pr	oject Trip	Generatio	on by Vehi	cle Type	
	Passenger Cars (Percent of Total)	79.57%	978	43	13	56	20	50	70
1	2-Axle Trucks (Percent of Total)	3.46%	43	2	1	3	1	2	3
T	3-Axle Trucks (Percent of Total)	4.64%	58	3	1	4	1	3	4
	4-Axle Trucks (Percent of Total)	12.33%	152	7	2	9	4	8	12
	PCE Factor		Proje	ct Trip Ge	neration i	in Passeng	ger Car Eq	uivalents	(PCE)
	Passenger Cars)	1	978	43	13	56	20	50	70
	2-Axle Trucks	1.5	65	3	2	5	2	3	5
	3-Axle Trucks (Percent of Total)	2	116	6	2	8	2	6	8
	4-Axle Trucks (Percent of Total)	3	456	21	6	27	12	24	36
		PCE Total	1,615	73	23	96	36	83	119
					Vehicle Tr	ip Genera	tion Rates	5	
	High Cube Cold Storage Warehouse			(Trips Per	1,000 Sqi	iare Feet o	of Gross F	loor Area,)
	(Comprises 20% of Building)	219.5	2.12	0.08	0.03	0.11	0.03	0.09	0.12
-	(ITE Land Use Category 157)			1	Total Veh	icle Trip G	eneration		
			466	19	6	25	8	19	27
		Mode Share		Total Pr	oject Trip	Generatio	on by Vehi	cle Type	[
	Passenger Cars (Percent of Total)	79.57%	371	15	5	20	6	15	21
2	2-Axle Trucks (Percent of Total)	3.46%	17	1	1	2	1	1	2
	3-Axle Trucks (Percent of Total)	4.64%	22	1	1	2	1	1	2
	4-Axle Trucks (Percent of Total)	12.33%	58	3	1	4	1	3	4
		PCE Factor	Total Pr	oject Trip	Generatio	on in Passe	enger Car	Equivaler	its (PCE)
	Passenger Cars)	1	3/1	15	5	20	6	15	21
	2-AXIE TRUCKS	1.5	26	2	2	4	2	2	4
	3-Axie Trucks (Percent of Total)	2	44	2	2	4	2	2	4
	4-Axie Trucks (Percent of Total)	3 DCE Total	1/4 615	9 70	3 12	12	5 12	9 70	12
		Combined T	otal Proie	20 ct Trins	12	40	15	20	41
		Mode Share		ct mps	tal Project	t Trin Gen	eration h	, Vehicle T	Vne
	Passenger Cars (Percent of Total)	79 57%	1 3/19	58	17	75	25	66	9 <i>pe</i> 91
	2-Axle Trucks (Percent of Total)	3 46%	59	3	1	4	1	3	4
	3-Axle Trucks (Percent of Total)	4 64%	79	3	1	4	1	4	5
	4-Axle Trucks (Percent of Total)	12 33%	209	9	3	12	4	11	15
	Total Combined Project Vehicle	Trips (Non-PCE)	1.696	73	22	95	31	84	115
	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	PCE Factor	,	Combine	d Total Pr	oject Trip	Generatio	on in PCEs	
	Passenger Cars)	1	1,349	58	17	75	25	66	91
	2-Axle Trucks	1.5	89	5	2	7	2	5	7
	3-Axle Trucks (Percent of Total)	2	158	6	2	8	2	8	10
	4-Axle Trucks (Percent of Total)	3	627	27	9	36	12	33	45
	Total Combined Project Ve	hicle Trips (PCE)	2,223	96	30	126	41	112	153

Notes:

KSF = Thousands of Square Feet.

AM / PM Peak Hour of Adjacent Street Traffic = Trip generation coinciding with the highest hourly volumes of traffic on the adjacent streets during the AM (7:00 AM and 9:00 AM) and PM (4:00 PM and 6:00 PM) commuter peak periods.

Source of trip generation rates: Institute of Transportation Engineers (ITE) Trip Generation (11th Edition). Average rates for land use category 154 (High-Cube Transload and Short-Term Storage Warehouse) and land use category 154 (High-Cube Cold Storage Warehouse)

Source of passenger car / truck mode share (percentage of total): Fontana Truck Trip Generation Study for Heavy Warehouse Uses (August 2003).

Passenger Car Equivalents (PCE) factors: Industry standard values utilized in neighboring jurisdictions.

The source of the mode share split between passenger cars and trucks by axle is the Fontana Truck Trip Generation Study¹ for **Warehouse Uses (ITE Land Use Category 150)**. The Passenger Car Equivalent (PCE) factors are from the City of Hesperia's (a neighboring City to Victorville) Traffic Impact Analysis Report Guidelines for Vehicle Miles Traveled (VMT) and Level of Service (LOS) Assessment dated July 2020. Passenger Car Equivalents (PCE) are provided by vehicle type and the conversion of trucks to PCEs is required by the City of Victorville for the calculation of intersection level of service.

As presented in **Table A**, the proposed project is estimated to generate 1,696 (2,223 PCE) daily trips, 95 (126 PCE) AM peak hour trips, and 115 (153 PCE) PM peak hour trips during the respective adjacent street peak hours.

C. Project Trip Distribution and Assignment

To address the impacts of the estimated project traffic, project trips are distributed by direction towards major commute routes, truck routes, freight haul corridors, and concentrations of residential and commercial / employment centers. Once the distribution pattern is established, project trips are assigned to the streets that provide the most direct route to destinations.

The distribution of the automobile trips (employees/visitors) is illustrated in **Exhibit C1**. The distribution of truck trips is illustrated in **Exhibit C2**. Truck trips are distributed to truck routes designated in Victorville's General Plan, the nearest of which includes Mojave Drive from I-15 to Highway 395. Highway 395, as a state highway, is also a designated truck route by the State of California. The assignment of the project's automobile trips to proposed study intersections is illustrated in **Exhibit D1**. The assignment of the project's truck trips to proposed study intersections (in passenger car equivalents) is illustrated in **Exhibit D2**. The assignment of total project trips (automobile plus trucks in passenger car equivalents) to proposed study intersections is illustrated in **Exhibit D3**.

D. Study Intersections

This focused traffic study evaluates project access driveways and key intersections on routes used by project traffic to access the site. This scope proposes to include four existing intersections and the four proposed driveways that accommodate most of the truck traffic as listed below:

- 1. Highway 395 / Mojave Drive
- 3. Mojave Drive / Onyx Road
- 5. Onyx Road / Project Driveway "A" (Future Intersection)
- 7. Mesa Linda Avenue / Project Driveway "C" (Future Intersection)
- 2. Mojave Drive / Mesa Linda Avenue
- 4. Highway 395 / Cactus Road
- 6. Onyx Road / Project Driveway "B" (Future Intersection)
- 8. Mesa Linda Avenue / Project Driveway "D" (Future Intersection)

The intersections of Highway 395 at Mojave Drive and at Cactus Road are currently traffic signal controlled. The intersections of Mojave Drive at Mesa Linda Avenue and Mojave Drive at Onyx Road are currently side-street stop-controlled.

Site Access

Access to the site is proposed from seven driveways: two right turn in/ right turn out only driveways on Mojave Drive, two full access driveways on Onyx Road, two full access driveways on Mesa Linda Avenue, and one full access driveway on Cactus Road. The assignment of the project's automobile trips to the project's main

¹ Fontana Truck Trip Generation Study. City of Fontana, County of San Bernardino, and the State of California. August 2003. This study collected empirical data and evaluated vehicle trip generation characteristics of several land use categories that typically generate significant volumes of truck traffic. The study collected data at numerous industrial facilities including mix of vehicles by axle. The data from this study has been integrated into ITE's Trip Generation manual.

driveways is illustrated in **Exhibit D1**. The assignment of the project's truck trips to the project's main driveways is illustrated in **Exhibit D2**².

E. Level of Service Methodology

Level of service will be calculated using the Highway Capacity Manual (HCM6) methodologies for signalized and non-signalized intersections. All study intersections will be analyzed to identify deficiencies in the city's Level of Service (LOS) policy. The capacity analysis will represent trucks in passenger car equivalents (PCE) in the existing and projected peak hour traffic volumes.

Signal warrant analyses. Signal warrant analyses (CA MUTCD Warrant #3 - Peak Hour) will be conducted at the non-signalized intersections of Mojave Drive study intersections (Mesa Linda Avenue and Onyx Road) if they are found to operate at LOS E or LOS F in any scenario.

Mitigation measures. If a study intersection is found to operate with a LOS deficiency under any "with project" scenario, improvements will be identified to accomplish the following:

- If the addition of project traffic causes the level of service to change from a LOS D or better in the "without project" condition to a LOS E or F, the improvement should return the level of service to a LOS D or better. In future conditions, the deficiency described above is a "cumulative" impact and the study will include the project's fair-share contribution to the impact (and the cost to mitigate the deficiency).
- If an intersection is operating at a deficient LOS E or F in the "without project" condition and the project adds traffic to the intersection that increases the average delay, the improvement should, at a minimum, offset the project's increase in delay. In near-term and future conditions, the deficiency described above is a "cumulative" impact and the study will include the project's fair-share contribution to the impact (and the cost to mitigate the deficiency).

F. Traffic Study Scenarios

Scenarios analyzed in this study are consistent with City of Victorville, San Bernardino County Congestion Management Program (CMP), and Caltrans requirements for analysis scenarios which include:

- 1. Existing Conditions (AM (7-9 AM) and PM (4-6 PM) peak hours)
- 2. Background Conditions (Year 2024)
 - a. Existing + ambient growth (assuming a growth rate of 3.5% per year per city guidelines)
 - b. Adjacent planned and approved (but not yet built) development
- 3. Background + Project Conditions (Year 2024)
 - a. Background conditions as defined above + project traffic
- 4. Future Horizon Year 2034 Without Project Conditions
 - a. Background + ambient growth (assuming a growth rate of 3.5% per year per city guidelines)
 - b. Adjacent planned and approved (but not yet built) development
- 5. Future Horizon Year 2034 + Project
 - a. Future horizon year 2034 conditions + project traffic
- 6. Future Year (2044) Without Project Conditions (Caltrans required 20-year projections)
 - a. Derived from extrapolation of year 2040 SBTAM model projections
- 7. Future Year (2044) + Project Conditions

G. Vehicle Miles Traveled (VMT) Screening

The following is a screening assessment to determine if the project is required to conduct a VMT analysis for environmental clearance under CEQA based on criteria in the City of Victorville's Vehicle Miles Traveled (VMT) Analysis Guidelines adopted by the City in June of 2020 in conformance with SB 743.

² The assignment of project generated traffic to the project's main driveways is preliminary and subject to refinement during the study.

Project Screening from Conducting VMT Analyses

Victorville uses screening criteria to determine if a development project is required to conduct a VMT analysis. If a project satisfies the criteria described below it is considered to have a less than significant impact on VMT and does not require a VMT analysis.

Victorville has two criteria for screening projects from requiring a VMT analysis.

- The first criterion is based on the project's net daily increase in vehicle trips—if the project's net daily traffic generation is equal to or less than the city's threshold of 1,285 trips per day, it is exempt from a VMT analysis.
- The second criterion (*Project Type*) is comprised of a list of specific land uses types and a maximum size threshold in terms of dwelling units for residential projects and floor area for non-residential projects. The listed types of land uses are based on the maximum building size that would generate under 3,000 metric tons of Carbon Dioxide Equivalent (CO2e) annually—the most stringent CO₂ emissions standard in California. Proposed projects matching the "project type" and falling within the size thresholds are exempt from a VMT analysis.

1. Screening for Net Increase in Daily Vehicle Trips

As shown in **Table A**, the project's net increase in daily trips is 1,696 daily vehicle trips (non-PCE) which exceeds the threshold of 1,285 daily trips in the city's guidelines. **Based on this criterion, the project is NOT screened from requiring a VMT analysis.**

2. Project Type Screening

According to the City of Victorville's VMT guidelines, the following type of land uses or development with the specified maximum size are exempt from having to conduct a VMT analysis:

- Single Family or Multifamily Residential 136 dwelling units or less
- Office 227,000 square feet or less
- Retail 122,000 square feet or less
- Warehousing 829,000 square feet or less
- Light Industrial 296,000 square feet or less
- K-12 Public School
- Daycare/Childcare/Pre-K
- Affordable Housing
- Student Housing
- Community Institutions, Social Services and Public Buildings

The proposed project is comprised of Warehousing with a total building floor area of 1,097,300 square feet (including internal office space) exceeds the city's warehousing size threshold of 829,000 square feet of floor area. **Based on Victorville's two criterion, the project is NOT screened from requiring a VMT analysis.**

Attachments

- 1. Exhibit A Vicinity Map
- 2. Exhibit B Site Plan
- 3. Exhibit C1 Auto Project Trip Distribution
- 4. Exhibit C2 Truck Project Trip Distribution
- 5. Exhibit D1 Auto Project Trips
- 6. Exhibit D2 Truck PCE Project Trips
- 7. Exhibit D3 Total PCE Project Trips

DAVID EVANS

EXHIBIT A: VICINITY MAP PROPOSED INDUSTRIAL SITE VICTORVILLE, CALIFORNIA

EXHIBIT B: SITE PLAN PROPOSED INDUSTRIAL SITE VICTORVILLE, CALIFORNIA Drawing Name: P.\IIIPGIM68H0001\0400CAD\TT\EXHIBITS\Scope\Exhibit B.dwg Last Opened: Sep 22, 2022 - 2.03pm by: Tnm

N

NOT TO SCALE

(7

AUTO PROJECT TRIPS AM PEAK HOUR - 58 IN / 17 OUT PM PEAK HOUR - 25 IN / 66 OUT

MOJAVE DR

LEGEND

XX/XX 🤳 - AM/PM PROJECT TRIP

- (#) STUDY INTERSECTIONS
- SIGNALIZED INTERSECTION
- STOP CONTROLLED APPROACH

DAVID EVANS

EXHIBIT D1: PROJECT AUTOMOBILE TRIPS PROPOSED INDUSTRIAL SITE VICTORVILLE, CALIFORNIA

TRUCK PROJECT TRIPSAM PEAK HOUR- 38 IN / 13 OUTPM PEAK HOUR- 16 IN / 46 OUT

LEGEND

XX/XX 🤳 - AM/PM PROJECT TRIP

- (#) STUDY INTERSECTIONS
 - SIGNALIZED INTERSECTION
 - I STOP CONTROLLED APPROACH

EXHIBIT D2: PROJECT TRUCK TRIPS PROPOSED INDUSTRIAL SITE VICTORVILLE, CALIFORNIA

MOJAVE DR

LEGEND

XX/XX 🤳 - AM/PM PROJECT TRIP

2

- (#) STUDY INTERSECTIONS
- ISIGNALIZED INTERSECTION
- STOP CONTROLLED APPROACH

EXHIBIT D3: TOTAL PROJECT TRIPS PROPOSED INDUSTRIAL SITE VICTORVILLE, CALIFORNIA **APPENDIX C:**

CARB EMFAC OFFROAD2021 (v1.0.3) OUTPUTS

EMFAC

A	EMISSIONS	PROJECT ANALYSIS	SCENARIO A

Shareable link: https://arb.ca.gov/emfac/emissions-inventory/d748b34605a6a34673f16491d359406b2eb034dd

Request Summary

Region Type		
Sub-Area		
Region		
San Bernardino (MD)		
Calendar Year		
2024		

Output Table

ANALYSIS FLEET DATABASE META

Vehicle Classification	۷
OFFROAD2021 Equipment Types	0
Model Year	М
Aggregate	A
Horsepower Bin	н
50	5
Fuel	F
Diesel	D
Units	U
tons/day for Emissions, gallons/year for Fuel, hours/year for Activity, Horsepower-hours/year for Horsepower-hours	to H

APPENDIX D:

Victorville CAP GHG Screening Table

Commercial/Industrial Section

Feature	Description	Assigned Point Values	Project Points					
Reduction Measure PS E3: Energy Efficiency For Commercial Development								
Building Env	Building Envelope							
Insulation	2019 baseline (walls R-16; roof/attic R-32)	0 points						
	Modestly Enhanced Insulation (walls R-15, roof/attic R-38)	9 points	0					
	Enhanced Insulation (rigid wall insulation R-13, roof/attic R-38)	11 points	9					
	Greatly Enhanced Insulation (spray foam insulated walls R-18 or higher, roof/attic R-38 or higher)	12 points						
Windows	2019 Baseline Windows (0.3 U-factor, 0.23 solar heat gain coefficient [SHGC)	0 points						
	Enhanced Window Insulation (0.28 U-factor, 0.22 SHGC)	4 points	4					
	Enhanced Window Insulation (0.28 U-factor, 0.22 SHGC)	4 points						
	Greatly Enhanced Window Insulation (0.28 or less U-factor, 0.22 or less SHGC)	5 points						
Cool Roofs	2019 Standard (none)	0 points						
	Enhanced Cool Roof (CRRC Rated 0.2 aged solar reflectance, 0.75 thermal emittance)	7 points	7					
	Enhanced Cool Roof (CRRC Rated 0.2 aged solar reflectance, 0.75 thermal emittance)	7 points						
	Greatly Enhanced Cool Roof (CRRC Rated 0.35 aged solar reflectance, 0.75 thermal emittance)	8 points						
Air Infiltration	Minimizing leaks in the building envelope is as important as the insulation properties of the building. Insulation does not work effectively if there is excess air leakage	0 points						
	Air barrier applied to exterior walls, calking, and visual inspection such as the HERS Verified Quality Insulation Installation (QII or equivalent)	7 points	13					
	Blower Door HERS Verified Envelope Leakage or equivalent	6 points						
Thermal Storage of Building	Thermal storage is a design characteristic that helps keep a constant temperature in the building. Common thermal storage devices include strategically placed water filled columns, water storage tanks, and thick masonry walls.							
	Modest Thermal Mass (10% of floor or 10% of walls 12" or more thick exposed concrete or masonry with no permanently installed floor covering such as carpet, linoleum, wood or other insulating materials)	2 points	2					
	Enhanced Thermal Mass (20% of floor or 20% of walls 12" or more thick exposed concrete or masonry with no permanently installed floor covering such as carpet, linoleum, wood or other insulating materials)	14 points						

Feature	Description	Assigned Point Values	Project Points
Building Envelope	Projects that have not been designed to a level of detail to know the specific attributes of the building envelope can use this option in committing to one of the following performance standards		
Performance	Modestly Enhanced Building Envelope (5% > Title 24)	TBD	
Standard	Enhanced Building Envelope (15% > Title 24)	TBD TBD	
Indoor Space	e Efficiencies Commercial		
Heating/	Minimum Duct Insulation (R-6 required)	0 points	
Distribution	Enhanced Duct Insulation (R-8)	5 points	
System	Enhanced Duct Insulation (R-8)	5 points	11
	Distribution loss reduction with inspection (HERS Verified Duct Leakage or equivalent)	6 points	
Space Heating/	2019 Minimum HVAC Efficiency (EER 13/75% AFUE or 7.7 HSPF)	0 points	
Cooling Equipment	Improved Efficiency HVAC (EER 14/78% AFUE or 8 HSPF)	4 points	
	High Efficiency HVAC (EER 15/80% AFUE or 8.5 HSPF)	5 points	5
	Very High Efficiency HVAC (EER 16/82% AFUE or 9 HSPF)	7 points	
Commercial Heat Recovery Systems	Heat recovery strategies employed with commercial laundry, cooking equipment, and other commercial heat sources for reuse in HVAC air intake	TBD	
	or other appropriate heat recovery technology. Point values for these types of systems will be determined based upon design and engineering data documenting the energy savings	TBD	
Water Heaters	2019 Minimum Efficiency (0.57 Energy Factor)	0 points	
	Improved Efficiency Water Heater (0.675 Energy Factor)	8 points	
	High Efficiency Water Heater (0.72 Energy Factor)	10 points	10
	Very High Efficiency Water Heater (0.92 Energy Factor)	11 points	
	Solar Pre-heat System (0.2 Net Solar Fraction)	2 points	
	Enhanced Solar Pre-heat System (0.35 Net Solar Fraction)	5 points	
Daylighting			
	All peripheral rooms within the customer areas have at least one window	0 points	
	All rooms within the customer areas have daylight (through use of windows, solar tubes, skylights, etc.) such that each room has at least 800 lumens of light during a sunny day	1 points	
	All rooms doulighted	1 nointe	
		T points	

Feature	Description	Assigned Point Values	Project Points
Artificial Lighting	2019 Minimum (required)	0 points	
	Efficient Lights (25% of in-unit fixtures considered high efficacy. High efficacy is defined as 40 lumens/watt for 15 watt or less fixtures; 50 lumens/watt for 15-40 watt fixtures, 60 lumens/watt for fixtures >40watt)	5 points	5
	High Efficiency Lights (50% of in-unit fixtures are high efficacy)	7 points	
	Very High Efficiency Lights (100% of in-unit fixtures are high efficacy)	8 points	
Appliances	Energy Star Commercial Refrigerator (new)	2 points	
	Energy Star Commercial Dish Washer (new)	2 points	
	Energy Star Commercial Cloths Washing Machine (new)	2 points	
Indoor Space Performance Standard	Projects that have not been designed to a level of detail to know the specific attributes of the interior design of the buildings can use this option in committing to one of the following performance standards		
	Modestly Enhanced Interior and appliances (5% > Title 24) Enhanced Interior and appliances (15% > Title 24) Greatly Enhanced Interior and appliances (20% > Title 24)	TBD TBD TBD	
Miscellaneo	us Commercial/Industrial Building Efficiencies		
Building Placement	North/South alignment of building or other building placement such that the orientation of the buildings optimizes natural heating, cooling, and lighting.	4 points	4
Shading	At least 90% of south-facing glazing will be shaded by vegetation or overhangs at noon on Jun 21st.	6 points	
Other	This allows innovation by the applicant to provide design features that increases the energy efficiency of the project not provided in the table.		
	Engineering data will be required documenting the energy efficiency of innovative designs and point values given based upon the proven efficiency beyond Title 24 Energy Efficiency Standards.	TBD	
Existing Commercial Retrofits	The applicant may wish to provide energy efficiency retrofit projects to existing Commercial dwelling units to further the point value of their project. Retrofitting existing Commercial dwelling units within the City is a key reduction measure that is needed to reach the reduction goal. The potential for an applicant to take advantage of this program will be decided on a case by case basis and must have the approval of the Escondido Planning Department. The decision to allow applicants to ability to participate in this program will be evaluated based upon, but not limited to the following:		
	Will the energy efficiency retrofit project benefit low income or disadvantaged residents?		
	Does the energy efficiency retrofit project fit within the overall assumptions in Reduction Measure R2E3?		

Feature	Description	Assigned Point Values	Project Points
	Does the energy efficiency retrofit project provide co-benefits important to the City?		
	Point value will be determined based upon engineering and design criteria of the energy efficiency retrofit project.	TBD	
Reduction	Measure PS E2: New Commercial/Industrial Renewable Ene	ergy	
Photovoltaic	Solar Photovoltaic panels installed on commercial buildings or in collective arrangements within a commercial development such that the total power provided augments:		
	30 percent of the power needs of the project	8 points	
	40 percent of the power needs of the project	12 points	
	50 percent of the power needs of the project	16 points	8
	60 percent of the power needs of the project	19 points	
	70 percent of the power needs of the project	23 points	
	80 percent of the power needs of the project	26 points	
	90 percent of the power needs of the project	30 points	
	100 percent of the power needs of the project	34 points	
Wind turbines	Some areas of the City lend themselves to wind turbine applications. Analysis of the area's capability to support wind turbines should be evaluated prior to choosing this feature.		
	Individual wind turbines at homes or collective neighborhood arrangements of wind turbines such that the total power provided augments:		
	30 percent of the power needs of the project	8 points	
	40 percent of the power needs of the project	12 points	
	50 percent of the power needs of the project	16 points	
	60 percent of the power needs of the project	19 points	
	70 percent of the power needs of the project	23 points	
	80 percent of the power needs of the project	26 points	
	90 percent of the power needs of the project	30 points	
	100 percent of the power needs of the project	34 points	
Off-site renewable energy project	The applicant may submit a proposal to supply an off-site renewable energy project such as renewable energy retrofits of existing Commercial that will help implement R2 E4, or existing commercial/industrial that will help implement R2 E7. These off-site renewable energy retrofit project proposals will be determined on a case by case basis accompanied by a detailed plan documenting the quantity of renewable energy the proposal will generate.	TPD	
	proposal.	עמו	

Feature	Description	Assigned Point Values	Project Points	
Other Renewable Energy Generation	The applicant may have innovative designs or unique site circumstances (such as geothermal) that allow the project to generate electricity from renewable energy not provided in the table. The ability to supply other renewable energy and the point values allowed will be decided based upon engineering data documenting the ability to			
	generate electricity.	TBD		
Reduction N	leasure PS W2: Water Use Reduction Initiative			
Irrigation ar	nd Landscaping			
Water Efficient	Eliminate conventional turf from landscaping	0 points		
Landscaping	Only moderate water using plants	2 points		
	Only low water using plants	3 points	5	
	Only California Native landscape that requires no or only supplemental irrigation	5 points		
Water Efficient	Low precipitation spray heads< .75"/hr. or drip irrigation	1 point	2	
Irrigation Systems	Weather based irrigation control systems combined with drip irrigation (demonstrate 20 reduced water use)	3 points	3	
Recycled Water	Recycled water connection (purple pipe) to irrigation system on site	5 points		
Trees	Increase tree planting in parking areas 50% beyond City Code requirements	TBD		
Storm water Reuse Systems	Innovative on-site stormwater collection, filtration and reuse systems are being developed that provide supplemental irrigation water and provide vector control. These systems can greatly reduce the irrigation needs of a project.			
	Point values for these types of systems will be determined based upon design and engineering data documenting the water savings.	TBD		
Potable Wa	Potable Water Commercial			
Showers	Water Efficient Showerheads (2.0 gpm)	2 points		
Toilets	Water Efficient Toilets/Urinals (1.5gpm)	3 points	6	
	Waterless Urinals (note that commercial buildings having both waterless urinals and high efficiency toilets will have a combined point value of 6 points)	3 points		
Faucets	Water Efficient faucets (1.28gpm)	2 points	2	
Commercial Dishwashers	Water Efficient dishwashers (20% water savings)	2 points		

Feature	Description	Assigned Point Values	Project Points	
Commercial Laundry Washers	EPA Water Efficient laundry (15% water savings)	2 points		
	EPA High Efficiency laundry Equipment that captures and reuses rinse water (30% water savings)	4 points		
Commercial Water Operations Program	Establish an operational program to reduce water loss from pools, water features, etc., by covering pools, adjusting fountain operational hours, and using water treatment to reduce draw down and replacement of water.			
	Point values for these types of plans will be determined based upon design and engineering data documenting the water savings.	TBD		
Potable Water Performance Standard	Projects that have not been designed to a level of detail to know the specific attributes design can use this in committing to a potable water efficiency	TBD		
Reduction N	leasure: Land Use Based Trips and VMT Reduction			
Mixed Use Commercial	Mixes of land uses that complement one another in a way that reduces the need for vehicle trips can greatly reduce GHG emissions. The point value of mixed use projects will be determined based upon a Transportation Impact Analysis (TIA) demonstrating trip reductions and/or reductions in vehicle miles traveled. Suggested ranges:	TBD		
	Mixes of land uses that complement one another in a way that reduces the need for vehicle, determined based upon a Transportation Impact Analysis (2-28 points)	TBD		
	Increased destination accessibility other than transit (1-18 points)	TBD		
	Increased transit accessibility (1-28 points)	TBD		
	Infill location that reduces vehicle trips or VMT beyond the specified measures	TBD		
Local Retail Near Residential (Commercial only Projects)	Having residential developments within walking and biking distance of local retail helps to reduce vehicle trips and/or vehicle miles traveled.			
	The point value of residential projects in close proximity to local retail will be determined based upon traffic studies that demonstrate trip reductions and/or reductions in vehicle miles traveled.	TBD		
	Dreferential parking	1 point		
		1 point		
	Connect signals to existing ITS	3 points		
Reduction N	Reduction Measure: Bicycle Master Plan Development			
Bicycle	Provide bicycle paths within project boundaries.	1 point		
Infrastructure	Provide bicycle path linkages between residential and other land uses.	2 points		
	Provide bicycle path linkages between residential and transit.	5 points		

Feature	Description	Assigned Point Values	Project Points
Reduction Measure: Electric Vehicle Infrastructure			
Cars	Level 2 240 volt AC Fast Chargers	5 points	
curs	Level 3 480 volt DC Rapid Chargers	8 points	
Trucks	Medium & Heavy Duty Electric Truck Chargers Level 1 AC Chargers for EV Medium Duty Truck Level 1 AC Chargers for EV Class 8 (Heavy Duty) Truck Level 2 AC Chargers for EV Medium Duty Truck Level 2 AC Chargers for EV Class 8 (Heavy Duty) Truck Level 3 DC Chargers for EV Class 8 (Heavy Duty) Truck	3 points 5 points 8 points 12 points 16 points	13
Total Points from	Commercial/Industrial Project:		107

-Commercial/Industrial Section Ends-